Comparison of hepatic drug-metabolizing enzymes induced by 3-methylcholanthrene and phenobarbital between pre- and postnatal rats. 1984

M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori

Effects of 3-methylcholanthrene (3MC) and phenobarbital (PB) on the hepatic drug-metabolizing enzyme system in fetal liver of rats were investigated. Intraperitoneal administration of 3MC (25 mg/kg, 72 and 48 hr before death) to pregnant rats significantly increased hexobarbital (HB) and aminopyrine (AM)-metabolizing activities in fetuses on the 21st day of gestation to 148.0 and 150.6% of control fetuses, respectively. In contrast, HB and AM-metabolizing activities in 4-day-old neonates and mothers were decreased by administration of 3MC on the 21st day of gestation. Benzo[a]pyrene (BP)-metabolizing activity, NADPH-cytochrome c reductase activity, and cytochrome P-450 content in 3MC-treated fetuses were significantly increased to 2143.6, 137.6, and 323.8% of the control, respectively. Following 3MC administration, the maximum absorption of the cytochrome P-450-CO difference spectra in liver microsomes of fetuses was observed at 449-450 nm. The induction profile following 3MC administration in the fetal livers was different from that in the neonatal and the maternal livers. On the other hand, intraperitoneal administration of PB (60 mg/kg, 72, 48, and 24 hr before death) significantly increased HB, AM, and BP-metabolizing activities in fetal livers to 263.7, 231.0, and 151.2% of the respective controls. The profile induced by PB in the fetal livers was similar to that in maternal livers. These results suggest that HB and AM-metabolizing enzymes in fetal livers treated with 3MC or PB possess the capacity to be induced, and the responsiveness of the drug-metabolizing enzyme system to 3MC during the prenatal stage may differ from the postnatal stage.

UI MeSH Term Description Entries
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females

Related Publications

M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
March 1968, Biochemical and biophysical research communications,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
March 1990, Toxicology and applied pharmacology,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
October 1973, Biochemical pharmacology,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
November 1978, Biochemical and biophysical research communications,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
September 1960, The Journal of pharmacology and experimental therapeutics,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
January 1981, Journal of toxicology and environmental health,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
June 1968, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
January 1973, Acta pharmacologica et toxicologica,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
January 1980, Life sciences,
M Sunouchi, and A Takanaka, and K Mizokami, and K Inoue, and K Fujimori, and Y Kasuya, and Y Omori
September 1997, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!