The vasopressor and oxytocic activities of the hypothalamus and neurohypophysis influenced by stimulated alpha-adrenergic transmission during dehydration and subsequent rehydration in the white rat. 1983

J Ciosek, and J W Guzek, and J Morawska

Under conditions of equilibrated water metabolism a single dose of methoxamine increased the content of vasopressin in the hypothalamus as well as that of oxytocin both in the hypothalamus and neurohypophysis. During dehydration the depletion of hypothalamic and neurohypophysial vasopressin was more marked in methoxamine-treated animals; this effect, however, was absent in the neurohypophysis on the 2nd day and in the hypothalamus on the 8th day of water deprivation. After two days of dehydration methoxamine inhibited the decrease of oxytocin content in the hypothalamus; simultaneously (2nd and 4th day of dehydration) it intensified this process in the neurohypophysis. During rehydration methoxamine impaired the renewal of vasopressin both in the hypothalamus and neurohypophysis; this effect was most marked on the 8th day of rehydration. On the contrary, it favoured somewhat the renewal of hypothalamic oxytocin in rehydrated rats (such an event was not found on the 8th day of rehydration). Moreover, methoxamine restrained initially (on the 2nd and 4th day of rehydration) the restoration of neurohypophysial oxytocin stores; following eight days of rehydration an opposite effect was here found. It is concluded that the response of the vasopressinergic and oxytocinergic neurons to alpha-adrenergic stimulation, brought about by using methoxamine as pharmacological tool, seems to be depended on the actual state of water metabolism. Impulses from the osmoreceptors may be therefore of some importance in modifying the change in vasopressin and oxytocin synthesis, transport and release resulting from stimulation of alpha-adrenergic transmission through neural chains including units susceptible to methoxamine.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings

Related Publications

J Ciosek, and J W Guzek, and J Morawska
June 1953, British journal of pharmacology and chemotherapy,
J Ciosek, and J W Guzek, and J Morawska
February 1965, Acta endocrinologica,
Copied contents to your clipboard!