Determinants of fatty acid and alcohol monomer activities in mixed micellar solutions. 1978

V L Sallee

The determinants of monomer activities of lipids dissolved in micellar bile salt solutions have been studied using polyethylene discs as the organic phase of a partitioning system. The studies show that fatty acids and alcohols interact with micelles as a partitioning system so that the monomer activity is determined by micelle volume and the lipid's partition coefficient as well as mass of lipid in the solution. Influence of the partition coefficient is seen in the dependence of monomer activity on chain length, unsaturation and carboxyl or alcohol polar groups. Dependence on chain length is equivalent to an incremental free energy of approximately -700 cal. mol(-1) per methylene group. Substitution of an alcohol group for the carboxyl group at pH 7.4 decreases monomer activity by a factor of 900. Expansion of taurodeoxycholate micelles with 5mM monooleoylglycerol slightly decreases monomer activity whereas solutions of lipids in taurocholate have relatively greater monomer activities, demonstrating the influence of volume of the micelle organic phase. With constant micelle structure, monomer activity was linearly dependent on lipid mass in the system as predicted by partitioning theory. Addition of low concentration of lecithin, lysolecithin, or monoacylglycerol to the solutions had only small effects on the monomer activities consistent with the small change in total micelle organic phase. Data provided allow calculation of monomer activities of fatty acids and alcohols in many complex micellar solutions. Such data are important for evaluating such processes as intestinal absorption and gallstone formation and dissolution.

UI MeSH Term Description Entries
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D003102 Colloids Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other. Hydrocolloids,Colloid,Hydrocolloid
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D005233 Fatty Alcohols Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Fatty Alcohol,Alcohol, Fatty,Alcohols, Fatty
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

V L Sallee
March 1970, European journal of clinical investigation,
V L Sallee
May 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
V L Sallee
January 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
V L Sallee
September 1994, Journal of pharmaceutical sciences,
V L Sallee
January 2008, Chemical & pharmaceutical bulletin,
V L Sallee
November 2010, The journal of physical chemistry. B,
V L Sallee
February 1968, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!