Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. 1984

U Siebenlist, and L Hennighausen, and J Battey, and P Leder

A chromosomal myc gene displays one of three patterns of activity depending upon the arrangement of the gene and its allelic partner. In nonmalignant B cells both myc alleles are normally expressed. In Burkitt lymphoma cells carrying both a translocated and a nontranslocated myc allele, the translocated allele is inappropriately expressed, while the nontranslocated allele is virtually inactive. Here we examine the chromatin structure of these genes using DNAase I hypersensitivity in nonmalignant lymphoblastoid cells and in the Burkitt lymphoma, BL31 . Three hypersensitivity patterns emerge that correlate with the state of the gene and reveal sites associated with putative regulatory structures. One region is associated with the two myc promoters, one with a specific nuclear protein binding site, and one--which is markedly enhanced in the inactive germline gene in the Burkitt cell--with a putative negative control region. The perturbation of the normal pattern in this particular Burkitt cell may be due to the action of an immunoglobulin enhancer.

UI MeSH Term Description Entries
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA

Related Publications

U Siebenlist, and L Hennighausen, and J Battey, and P Leder
April 1985, Proceedings of the National Academy of Sciences of the United States of America,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
January 1983, Nature,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
February 1984, Cell,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
June 1988, Science (New York, N.Y.),
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
June 1984, Cell,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
September 2008, Human pathology,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
January 2011, PloS one,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
U Siebenlist, and L Hennighausen, and J Battey, and P Leder
February 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!