Adrenergic blockade alters glucose kinetics during exercise in insulin-dependent diabetics. 1984

D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo

We investigated the effects of alpha and/or beta adrenergic blockade (with phentolamine and/or propranolol) on glucose homeostasis during exercise in six normal subjects and in seven Type I diabetic subjects. The diabetics received a low dose insulin infusion (0.07 mU/kg X min) designed to maintain plasma glucose at approximately 150 mg/dl. In normals, neither alpha, beta, nor combined alpha and beta adrenergic blockade altered glucose production, glucose uptake, or plasma glucose concentration during exercise. In diabetics, exercise alone produced a decline in glucose concentration from 144 to 116 mg/dl. This was due to a slightly diminished rise in hepatic glucose production in association with a normal increase in glucose uptake. When exercise was performed during beta adrenergic blockade, the decline in plasma glucose was accentuated. An exogenous glucose infusion (2.58 mg/kg X min) was required to prevent glucose levels from falling below 90 mg/dl. The effect of beta blockade was accounted for by a blunted rise in hepatic glucose production and an augmented rise in glucose utilization. These alterations were unrelated to changes in plasma insulin and glucagon levels, which were similar in the presence and absence of propranolol. In contrast, when the diabetics exercised during alpha adrenergic blockade, plasma glucose concentration rose from 150 to 164 mg/dl. This was due to a significant increase in hepatic glucose production and a small decline in exercise-induced glucose utilization. These alterations also could not be explained by differences in insulin and glucagon levels. We conclude that the glucose homeostatic response to exercise in insulin-dependent diabetics, in contrast to healthy controls, is critically dependent on the adrenergic nervous system.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide

Related Publications

D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
December 2003, Metabolism: clinical and experimental,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
February 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
August 1987, Diabetes,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
April 1974, The New England journal of medicine,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
September 2000, Journal of applied physiology (Bethesda, Md. : 1985),
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
June 1988, The Journal of clinical investigation,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
October 1972, Acta endocrinologica,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
November 1980, Acta endocrinologica,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
April 1983, American journal of veterinary research,
D C Simonson, and V Koivisto, and R S Sherwin, and E Ferrannini, and R Hendler, and A Juhlin-Dannfelt, and R A DeFronzo
January 1979, Medical journal of Zambia,
Copied contents to your clipboard!