Induction of tumors and generation of recovered sarcoma viruses by, and mapping of deletions in, two molecularly cloned src deletion mutants. 1984

L H Wang, and B Edelstein, and B J Mayer

td108 , a transformation-defective (td) deletion mutant of the Schmidt-Ruppin strain of Rous sarcoma virus of subgroup A (SR-A), was molecularly cloned. Two isolates of td viruses, td108 -3b and td108 -4a, obtained by transfection of the molecularly cloned td108 DNAs into chicken embryo fibroblasts, were tested for their ability to induce tumors and generate recovered avian sarcoma viruses ( rASVs ) in chickens. Both td viruses were able to induce tumors with a latency and frequency similar to those observed previously with biologically purified td mutants of SR-A. rASVs were isolated from most of the tumors examined. The genomic RNAs of those newly obtained rASVs were analyzed by RNase T1 oligonucleotide fingerprinting. The results showed that they had regained the deleted src sequences and contained the same set of marker src oligonucleotides as those of rASVs analyzed previously. The src oligonucleotides of rASVs are distinguishable from those present in SR-A. We conclude that those rASVs must have been generated by recombination between the molecularly cloned td mutants and the c-src sequence. The deletions in the td mutants were mapped by restriction enzyme analysis and nucleotide sequencing. td108 -3b was found to contain an internal src deletion of 1,416 nucleotides and to retain 57 and 105 nucleotides of the 5' and 3' src coding sequences, respectively. td108 -4a contained a src deletion of 1,174 nucleotides and retained 180 and 225 nucleotides of the 5' and 3' src sequences, respectively. Comparison of sequences in the 5' src and its upstream region of td108 -3b with those of SR-A, rASV1441 (a td108 -derived rASV analyzed previously), and c-src suggested that the 5' recombination between td108 and c-src occurred from 7 to 20 nucleotides upstream from the beginning of the src coding sequence.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

L H Wang, and B Edelstein, and B J Mayer
January 1980, Annals of the New York Academy of Sciences,
L H Wang, and B Edelstein, and B J Mayer
November 1980, Journal of virology,
L H Wang, and B Edelstein, and B J Mayer
December 1977, Journal of virology,
L H Wang, and B Edelstein, and B J Mayer
May 1995, BioTechniques,
L H Wang, and B Edelstein, and B J Mayer
January 2000, Methods in cell biology,
L H Wang, and B Edelstein, and B J Mayer
December 1971, Virology,
Copied contents to your clipboard!