Electrophysiological properties of spinally-projecting A5 noradrenergic neurons. 1984

C E Byrum, and R Stornetta, and P G Guyenet

Spinally-projecting A5 neurons were studied with anatomical and electrophysiological techniques in the rat. A detailed study of the number and distribution of spinally-projecting catecholaminergic (CA) and non-catecholaminergic neurons present in a defined area of ventrolateral pontine reticular formation was performed using a sequential technique for the detection of CA fluorescence and retrogradely transported HRP. Using control animals and rats with 6-hydroxydopamine-induced lesions of spinal CA axons, it was concluded that up to 93% of all noradrenergic (NE) neurons present in the area investigated send an axonal process to the thoracic spinal cord and that NE neurons constitute at least 90% of all spinally-projecting neurons present in the same area. Single unit recordings of spinally-projecting neurons were obtained in the same area of the reticular formation in urethane-anesthetized, paralyzed and respirated rats. Based on the above-mentioned anatomical data, antidromic activation from thoracic spinal cord provided a necessary and sufficient criterion for the identification of A5 NE cells. These neurons had a conduction velocity of 2.5 m/s, a discharge rate of up to 4 spikes/s and all were inhibited by i.v. clonidine or desmethylimipramine (DMI). The inhibition produced by the latter drugs was always reversed by the alpha-2 adrenergic antagonists piperoxan or yohimbine. Antidromic (AD)-activation was followed by a period of inhibition whose duration was increased by raising the intensity of the stimulus or by administration of the NE-uptake inhibitor DMI. The effect of the latter was reversed by administration of the alpha-2 antagonist piperoxan.

UI MeSH Term Description Entries
D008297 Male Males
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine

Related Publications

C E Byrum, and R Stornetta, and P G Guyenet
February 2022, Experimental physiology,
C E Byrum, and R Stornetta, and P G Guyenet
June 1984, Brain research,
C E Byrum, and R Stornetta, and P G Guyenet
April 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
C E Byrum, and R Stornetta, and P G Guyenet
January 2015, Neuroscience,
Copied contents to your clipboard!