Proliferation stimulating effects of chrysotile and crocidolite asbestos fibres on B lymphocyte cell lines. 1984

A Ueki, and T Oka, and Y Mochizuki

Asbestos fibres of chrysotile, crocidolite and amosite were incubated with eight types of human cell lines in vitro. These asbestos fibre were cytotoxic to fibroblasts and monocyte like cells, as is already known. On the other hand, immature B lymphocyte lines (B1 2) were stimulated significantly by chrysotile and crocidolite, while a mature B cell line (B3) was not affected. Cell proliferation of a T cell line and an erythromyeloid cell line also was not affected by asbestos. For the stimulation of lymphocytes, the binding of the mitogen to the reactive sites on the lymphocyte surface is thought to be indispensable. It seems that chrysotile and crocidolite asbestos can bind to immature B lymphocytes, but not to mature B cells.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001194 Asbestos Asbestos. Fibrous incombustible mineral composed of magnesium and calcium silicates with or without other elements. It is relatively inert chemically and used in thermal insulation and fireproofing. Inhalation of dust causes asbestosis and later lung and gastrointestinal neoplasms.
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D017632 Asbestos, Serpentine A type of asbestos that occurs in nature as the dihydrate of magnesium silicate. It exists in two forms: antigorite, a plated variety, and chrysotile, a fibrous variety. The latter makes up 95% of all asbestos products. (From Merck Index, 11th ed, p.893) Chrysotile,Serpentine (Mineral),Serpentine Asbestos,Antigorite,Asbestos, Serpentine, Chrysotile (Mg3(OH)4(Si2O5))

Related Publications

A Ueki, and T Oka, and Y Mochizuki
November 1971, The Journal of pathology,
A Ueki, and T Oka, and Y Mochizuki
January 1988, Journal of toxicology and environmental health,
A Ueki, and T Oka, and Y Mochizuki
October 1983, Laboratory investigation; a journal of technical methods and pathology,
A Ueki, and T Oka, and Y Mochizuki
August 1984, British journal of experimental pathology,
A Ueki, and T Oka, and Y Mochizuki
January 1995, La Medicina del lavoro,
A Ueki, and T Oka, and Y Mochizuki
March 2001, The Annals of occupational hygiene,
A Ueki, and T Oka, and Y Mochizuki
August 1974, The Annals of occupational hygiene,
Copied contents to your clipboard!