Characterization and biosynthesis of cyclic-AMP-binding proteins in the rat central nervous system. 1984

P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert

Cyclic-AMP-binding proteins in membrane and soluble fractions from rat forebrain were compared; membrane fractions included smooth and rough microsomes and a plasma membrane fraction enriched in synaptic membranes. Protein fractions were treated with 8-azido-[32P]cyclic AMP and ultraviolet irradiation to covalently tag cyclic-AMP-binding proteins. Labeled proteins were then analyzed by two-dimensional gel electrophoresis (2DGE) and fluorography. The soluble CNS proteins contained two major cyclic-AMP-binding species at 48K (48K 5.5 and 48K 5.45), differing slightly in their isoelectric points. Another protein was seen at 54K (54K 5.3) adjacent to the beta-tubulin subunits in the 2D electrophoretogram. The analysis of the smooth microsome and plasma membrane fractions differed from the soluble fraction in that there were two cyclic-AMP-binding proteins adjacent to the beta-tubulin region (54K 5.3 and 52K 5.3) differing slightly in apparent molecular weight. The membrane fractions also contained a cyclic-AMP-binding protein at 54K 5.8. The 52K 5.3 and 54K 5.8 species were unique to the membrane fractions. The rough microsomes did not contain detectable amounts of cyclic-AMP-binding proteins. Free polysomes were isolated from brain tissue, and translation products were analyzed by cyclic AMP affinity chromatography and immunopurification with antibodies to the brain specific type II regulatory subunit. The translation products that were found to bind cyclic AMP Sepharose are as follows: 48K 5.5, 48K 5.45, 52K 5.3, and 54K 5.8. These species comigrated with proteins that were photoaffinity-labeled in cytosol and membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
July 1994, Biochemistry and molecular biology international,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
December 1980, Endocrinologia japonica,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
June 1999, Brain research. Molecular brain research,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
September 1990, Endocrinology,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
December 1971, Annals of the New York Academy of Sciences,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
January 1974, Journal de physiologie,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
January 1984, Molecular and cellular biochemistry,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
January 1987, Advances in biochemical psychopharmacology,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
June 1985, Journal of neurochemistry,
P Strocchi, and V S Sapirstein, and C S Rubin, and J M Gilbert
September 1984, Experientia,
Copied contents to your clipboard!