Multi-exponential water proton spin-lattice relaxation in biological tissues and its implications for quantitative NMR imaging. 1984

C J Bakker, and J Vriend

This in vitro study was undertaken to examine whether water proton spin-lattice relaxation in biological tissues is adequately described by a single time constant T1, to define under what circumstances a multi-exponential approach is indicated, and to study the implications of multi- exponentiality for quantitative NMR imaging. Water proton relaxation curves were measured with the 180-tau-90 method at 60 MHz. Uni- and bi-exponential curves were fitted to the empirical curves using chi 2 as a criterion for the goodness of fit. An F-test was applied to test the validity of each exponential term as it was added to the fitting function. Taking into account experimental accuracy, the uni-exponential model appeared to be an adequate description of the relaxation data for necrotic tissue. Eyelens and fat showed distinct bi- exponentiality , while liver, spleen, salivary gland, tumour, and muscle presented intermediate cases. The bi-exponential analysis generally yields a minor component with a fast relaxation time, T11 less than 20 ms, and a slow relaxation major component with T12 greater than 300 ms. A simplified bi-exponential model is proposed for implementation in quantitative NMR imaging. The results seem to be consistent with current views about water proton spin-lattice relaxation in biological tissues.

UI MeSH Term Description Entries
D008297 Male Males
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C J Bakker, and J Vriend
January 1990, Physiological chemistry and physics and medical NMR,
C J Bakker, and J Vriend
January 1982, Magnetic resonance imaging,
C J Bakker, and J Vriend
February 1993, Nuklearmedizin. Nuclear medicine,
C J Bakker, and J Vriend
January 1989, Acta radiologica (Stockholm, Sweden : 1987),
C J Bakker, and J Vriend
January 1996, Physiological chemistry and physics and medical NMR,
C J Bakker, and J Vriend
February 2011, Journal of magnetic resonance (San Diego, Calif. : 1997),
C J Bakker, and J Vriend
September 1972, Journal of the National Cancer Institute,
Copied contents to your clipboard!