Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule. 1984

S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel

Gluconeogenesis and sodium transport are ATP-requiring functions of the renal proximal tubule. Previously observed interactions between these processes indicated that they may compete for cellular energy. We have reevaluated this interaction in the rabbit proximal tubule using two preparations: suspensions of cortical tubules and isolated perfused tubules. In the presence of lactate and alanine, net glucose synthesis was 22.3 +/- 1.3 nmol X mg protein-1 .30 min-1. Additions of valerate, butyrate, or succinate increased this rate by factors of 2-3 without affecting cellular ATP levels or net fluid absorption (Jv). Inhibition of ATP production with rotenone, which we have previously shown to inhibit Jv [Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F133-F140, 1982], greatly decreased the gluconeogenic rate, but this was modulated by the type of gluconeogenic substrate used. Increasing Na-K-ATPase activity with nystatin or decreasing it with ouabain had widely differing effects, which also depended on the substrate regimen. We conclude that the interaction between gluconeogenesis and active sodium transport cannot be described by a simple competition for ATP. Rather, under normal circumstances, the renal proximal tubule can meet the energetic demands of both gluconeogenesis and sodium transport, and control of these processes is multifactorial and sensitive to fatty acid metabolism.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005260 Female Females
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
October 1991, The American journal of physiology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
January 1984, Advances in experimental medicine and biology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
August 1992, The American journal of physiology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
September 1989, Kidney international,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
January 1996, The American journal of physiology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
June 1981, The American journal of physiology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
January 1991, Renal physiology and biochemistry,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
November 1989, The American journal of physiology,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
January 1988, Biochemistry,
S R Gullans, and P C Brazy, and V W Dennis, and L J Mandel
March 1981, The American journal of physiology,
Copied contents to your clipboard!