Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. 1984

R G O'Neil, and S C Sansom

The apical cell membrane ionic conductive properties of the isolated perfused rabbit cortical collecting duct (tubule) were assessed at 37 degrees C using microelectrode techniques. In the initial evaluation of the methodology, it was observed that stable cell membrane voltage recordings could be obtained by impaling cells either from the luminal side across the apical cell membrane or from the bath side across the basolateral cell membrane, providing initial evidence supporting the application of these techniques to this tissue. With the latter method of impalement, it was observed that addition of amiloride (50 microM) to the luminal perfusate caused a hyperpolarization of the apical cell membrane voltage, a decrease in the transepithelial conductance, and an increase in the fractional resistance (estimated as the ratio of the resistance of the apical cell membrane to the sum of apical and basolateral cell membrane resistances). These results are consistent with an amiloride-sensitive Na+ conductance at the apical cell border. In a similar manner it was deduced from the effects of elevating K+ in the luminal perfusate from 5 to either 25 or 50 mM that there was a high K+ conductance at the apical border. This conductive pathway was blocked by the luminal addition of 5 mM Ba2+ or reduction of the luminal pH to 4.0. Furthermore, since addition of both amiloride and Ba2+ to the perfusate caused the fractional resistance to increase from 0.52 +/- 0.04 to 0.91 +/- 0.03, the Na+ and K+ conductances are the apparent dominant conductive pathways at that border. It is concluded that microelectrode techniques can be applied successfully to the cortical collecting duct and that the apical cell membrane possesses an amiloride-sensitive Na+ conductance and a Ba2+- and H+-sensitive K+ conductance.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

R G O'Neil, and S C Sansom
January 1999, The American journal of physiology,
R G O'Neil, and S C Sansom
September 1996, The American journal of physiology,
R G O'Neil, and S C Sansom
May 1989, The American journal of physiology,
R G O'Neil, and S C Sansom
January 1983, The American journal of physiology,
R G O'Neil, and S C Sansom
October 2005, American journal of physiology. Renal physiology,
R G O'Neil, and S C Sansom
October 1994, Pflugers Archiv : European journal of physiology,
R G O'Neil, and S C Sansom
May 1990, The American journal of physiology,
R G O'Neil, and S C Sansom
July 1992, Pflugers Archiv : European journal of physiology,
R G O'Neil, and S C Sansom
October 1995, Kidney international,
R G O'Neil, and S C Sansom
November 1988, The Journal of general physiology,
Copied contents to your clipboard!