Production of colony-stimulating factor(s) for granulocyte-macrophage and multipotential (granulocyte/erythroid/megakaryocyte/macrophage) hematopoietic progenitor cells (CFU-GEMM) by clonal lines of human IL-2-dependent T-lymphocytes. 1984

J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny

Human T-lymphocyte lines that were selected for recognition of HLA-DR6 antigen and were dependent for growth in vitro on an added source of interleukin-2 (IL-2) were derived from the peripheral blood of normal individuals. Each was tested for production of a lymphokine(s) with properties of granulocyte-macrophage colony-stimulating factor (GM-CSF) using as target cells nonadherent cells from human long-term bone marrow cultures (LTBMC) or fresh marrow. Each of eight T-lymphocyte lines that were OKT3, OKT4, and HLA-DR positive produced GM-CSF that stimulated colony formation by both LTBMC cells and fresh marrow. Individually examined single-cell-derived bone marrow colonies growing in T-cell GM-CSF contained peroxidase-positive neutrophils, and macrophage-monocytes (GM-CFUc). Supernatant from a single-cell-derived T-cell clonal line designated F1 stimulated formation of granulocyte-macrophage colonies, megakaryocyte colonies, macroscopic erythroid bursts, and multipotential colonies containing erythroid cells, megakaryocytes, neutrophilic and eosinophilic granulocytes, and monocyte-macrophages (CFU-GEMM) in the presence of added erythropoietin. These data indicate that human IL-2-responsive T-lymphocytes produce lymphokine(s) that stimulate proliferation of primitive as well as committed hematopoietic stem cells, and implicate human T-lymphocytes in regulation of human multipotential hematopoietic stem cells in vivo.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008533 Megakaryocytes Very large BONE MARROW CELLS which release mature BLOOD PLATELETS. Megakaryocyte
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer

Related Publications

J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
September 1983, Journal of immunology (Baltimore, Md. : 1950),
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
April 1999, Experimental hematology,
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
September 1993, Stem cells (Dayton, Ohio),
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
September 2004, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
February 1980, The Biochemical journal,
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
February 1993, Blood,
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
July 1992, The New England journal of medicine,
J S Greenberger, and A M Krensky, and H Messner, and S J Burakoff, and U Wandl, and M A Sakakeeny
December 1997, The Southeast Asian journal of tropical medicine and public health,
Copied contents to your clipboard!