Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. 1984

C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman

Energy and spatial projection distributions were simulated for gamma camera imaging of multiple order Compton scattered photons. SPECT imaging of a line source of radioactivity located in a water filled cylindrical phantom was modelled using Monte Carlo techniques. Photon trajectories were followed from emission to detection including the effects of all physical interactions and the resulting energy spectra and spatial projections were sorted as a function of the number of times the photon underwent Compton scattering before detection. Analysis of energy spectra demonstrates that Compton events up to second order overlap with the non-scattered events and distributions are peaked at lower energies as the scattering order increases. Analysis of spatial projections shows that, with increasing order, Compton events produce tails on the line spread function which progress from roughly exponential to nearly flat distributions. The use of Monte Carlo modelling thus allows a detailed investigation of the spatial and energy distribution of Compton scatter which could not be performed using present experimental techniques.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed

Related Publications

C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
January 1988, Medical physics,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
January 1996, IEEE transactions on medical imaging,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
January 2016, Journal of synchrotron radiation,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
September 1995, Medical physics,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
July 1992, Acta radiologica (Stockholm, Sweden : 1987),
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
November 2000, Physics in medicine and biology,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
July 2008, Physics in medicine and biology,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
August 2004, European journal of nuclear medicine and molecular imaging,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
February 1996, Neurological research,
C E Floyd, and R J Jaszczak, and C C Harris, and R E Coleman
September 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Copied contents to your clipboard!