Insulin depolarization of rat hepatocytes in primary monolayer culture. 1983

R Wondergem

Rat hepatocytes in primary monolayer culture demonstrated two stable states of transmembrane potential (Em). Low potentials ranging from -10 to -15 mV followed impalements with glass microelectrodes, and in some cells low potentials increased spontaneously or in response to a train of intermittent current (5 nA) to stable potentials of -50 mV, which were comparable to hepatocyte Em in vivo. Adding insulin at 20 mU/ml depolarized the stable higher Em 22.4 +/- 2.6 mV (n = 6) over an 11-min interval, and input resistance increased 21.4 +/- 4.7 M omega (n = 6) during the depolarization. The insulin effect was dose dependent, because adding insulin at 0.2 mU/ml depolarized the stable high Em 5.0 +/- 1.5 mV (n = 3) and increased input resistance 6.3 +/- 1.8 M omega (n = 3). In one experiment the Em repolarized 32 min after insulin was washed out. Adding metabolic inhibitors KCN (1 mM) and 2,4-dinitrophenol (10 and 1 mM) and increasing external potassium (60 mM, with external sodium reduced equivalently) also depolarized Em, but they did not increase input resistance. Thus insulin depolarized hepatocytes from a stable high Em, which is equivalent to the Em of liver in vivo, to a stable low Em, which occurs in hepatocytes in primary monolayer culture. This hormone action is consistent with changes in membrane ion conductance, and it further demonstrates that these cells can sustain two stable states of Em.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.

Related Publications

Copied contents to your clipboard!