Properties of synthetically produced Escherichia coli heat-stable enterotoxin. 1983

F A Klipstein, and R F Engert, and R A Houghten

The properties of a synthetically produced peptide composed of the same primary structure of 18 amino acids described for human Escherichia coli heat-stable enterotoxin were compared with those of purified heat-stable toxin obtained by bacterial growth. The dosage required to evoke fluid secretion in the suckling mouse and rat ligated ileal loop assays was the same for both toxins. The antigenicity of the two toxins was similar when assayed by enzyme-linked immunosorbent assay with hyperimmune antiserum to either toxin. The secretory effect of the two toxins in the suckling mouse assay was seroneutralized by the same dilutions of hyperimmune antiserum to either toxin. Immunization of rats with the synthetic toxin coupled to a large-molecular-weight carrier raised serum and mucosal antitoxin responses which provided protection against challenge with either the synthetic or biological toxin as well as with viable heat-stable enterotoxin-in-producing organisms. These observations indicate that synthetically produced heat-stable toxin has the same properties as the toxin derived by bacterial culture. The availability of the more readily made synthetic form of heat-stable toxin should facilitate the production of a vaccine based on cross-linking this toxin with either the heat-labile toxin or its nontoxic B subunit.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

F A Klipstein, and R F Engert, and R A Houghten
September 1983, Nihon saikingaku zasshi. Japanese journal of bacteriology,
F A Klipstein, and R F Engert, and R A Houghten
June 1989, Archives of disease in childhood,
F A Klipstein, and R F Engert, and R A Houghten
June 1980, Infection and immunity,
F A Klipstein, and R F Engert, and R A Houghten
August 2000, Journal of natural toxins,
F A Klipstein, and R F Engert, and R A Houghten
November 1992, Infection and immunity,
F A Klipstein, and R F Engert, and R A Houghten
January 1983, Progress in food & nutrition science,
F A Klipstein, and R F Engert, and R A Houghten
January 1988, Methods in enzymology,
F A Klipstein, and R F Engert, and R A Houghten
January 1993, Microbiology and immunology,
F A Klipstein, and R F Engert, and R A Houghten
February 1974, Infection and immunity,
F A Klipstein, and R F Engert, and R A Houghten
May 1991, Biochemical and biophysical research communications,
Copied contents to your clipboard!