Rapid method for detection, identification, and susceptibility testing of enteric pathogens. 1983

C E Stager, and E Erikson, and J R Davis

Three hundred and seven colonies believed to be enteric pathogens were selected from primary plates of MacConkey, xylose desoxycholate, or salmonella-shigella agar for inoculation to lactose-sucrose broth, urea-41 motility medium, modified Andrade glucose broth with inverted Durham tube, pregrowth broth, triple sugar iron agar, lysine iron agar (LIA), and Christensen urea agar. The rapid screen consisted of interpreting the lactose-sucrose, urea-41 motility, and modified Andrade glucose broth gas reactions after 4 to 6 h at 35 degrees C. These rapid screening biochemicals plus LIA were incubated for 24 h if further interpretation was required. Reference biochemicals (triple sugar iron, LIA, and Christensen urea agars) were interpreted at 24 h. Of 307 isolates, 49 (16%) were reported as negative for enteric pathogens after 4 to 6 h because their biochemical profiles were not compatible with those for enteric pathogens. A total of 87 (28.3%) isolates produced biochemical profiles at 4 to 6 h that were presumptive for enteric pathogens. The 87 presumptive pathogens were inoculated into the AutoMicrobic system Gram-Negative General Susceptibility Card and the AutoMicrobic system Enterobacteriaceae-Plus Biochemical Card (AMS-EBC+) after 4 to 6 h of growth in pregrowth broth. Of these isolates, 63 were confirmed to be enteric pathogens, of which 61 (96.8%) were correctly identified by the AMS-EBC+. One isolate was identified as Shigella dysenteriae by AMS-EBC+ but confirmed as Shigella flexneri biotype 6 by a reference laboratory. The other isolate was identified as Arizona hinshawii by AMS-EBC+ but was confirmed as Salmonella enteritidis. Of the 307 isolates, 166 (54.1%) required further interpretation of the rapid screening biochemicals plus LIA at 24 h; 5 of these were detected as enteric pathogens. The same 68 enteric pathogens were detected by both the rapid method and the reference method. The results from the general susceptibility card agreed with agar diffusion results at 99.2%. One Salmonella enteritidis and four Shigella spp. showed minor discrepancies with tetracycline. No very major or major discrepancies were observed.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D012475 Salmonella A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that utilizes citrate as a sole carbon source. It is pathogenic for humans, causing enteric fevers, gastroenteritis, and bacteremia. Food poisoning is the most common clinical manifestation. Organisms within this genus are separated on the basis of antigenic characteristics, sugar fermentation patterns, and bacteriophage susceptibility.
D012760 Shigella A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that ferments sugar without gas production. Its organisms are intestinal pathogens of man and other primates and cause bacillary dysentery (DYSENTERY, BACILLARY).
D015007 Yersinia A genus of gram-negative, facultatively anaerobic rod- to coccobacillus-shaped bacteria that occurs in a broad spectrum of habitats.

Related Publications

C E Stager, and E Erikson, and J R Davis
January 1964, Acta microbiologica Academiae Scientiarum Hungaricae,
C E Stager, and E Erikson, and J R Davis
July 1983, Journal of clinical microbiology,
C E Stager, and E Erikson, and J R Davis
January 2013, Rinsho byori. The Japanese journal of clinical pathology,
C E Stager, and E Erikson, and J R Davis
March 1953, American journal of public health and the nation's health,
C E Stager, and E Erikson, and J R Davis
March 1987, Journal of clinical microbiology,
C E Stager, and E Erikson, and J R Davis
January 1971, Acta microbiologica Academiae Scientiarum Hungaricae,
C E Stager, and E Erikson, and J R Davis
June 2015, Clinics in laboratory medicine,
C E Stager, and E Erikson, and J R Davis
April 1970, Infection and immunity,
C E Stager, and E Erikson, and J R Davis
December 1996, Parassitologia,
C E Stager, and E Erikson, and J R Davis
May 2019, PLoS biology,
Copied contents to your clipboard!