Nucleotide sequence for the catalytic domain of colicin E3 and its immunity protein. Evidence for a third gene overlapping colicin. 1983

M Mock, and C G Miyada, and R P Gunsalus

We have determined the nucleotide sequence of a segment of Co1E3 DNA coding for the carboxyl-terminal, catalytic peptide of colicin E3 and for the immunity protein. The end of the colicin E3 gene is separated from the beginning of the immunity gene by a nine-basepair intercistronic region, suggesting the two genes are expressed as a single transcriptional unit. The immunity gene is expressed, however, in E. coli strains containing Co1E3-pBR322 hybrid plasmids deleted for the 5'-end of the colicin gene. The DNA sequence also contains an unexpected open reading frame (ORF). This ORF is contained within the colicin gene and is in the +1 reading frame with respect to that gene. Plasmids containing the ORF, directed the synthesis of an 11 kilodalton protein in a cell-free, transcription-translation system.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003087 Colicins Bacteriocins elaborated by strains of Escherichia coli and related species. They are proteins or protein-lipopolysaccharide complexes lethal to other strains of the same species. Colicin,Colicin E9,Colicine,Colicines,Colicin A,Colicin B,Colicin E,Colicin E1,Colicin E2,Colicin E3,Colicin E8,Colicin HSC10,Colicin Ia,Colicin Ib,Colicin K,Colicin K-K235,Colicin M,Colicin N,Colicin V,Colicins E,Colicins E9,Precolicin E1,Colicin K K235,E9, Colicin
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

M Mock, and C G Miyada, and R P Gunsalus
March 1985, Journal of molecular biology,
M Mock, and C G Miyada, and R P Gunsalus
May 1981, Journal of biochemistry,
M Mock, and C G Miyada, and R P Gunsalus
January 1974, The Journal of biological chemistry,
M Mock, and C G Miyada, and R P Gunsalus
January 1974, The Journal of biological chemistry,
M Mock, and C G Miyada, and R P Gunsalus
September 1974, Proceedings of the National Academy of Sciences of the United States of America,
M Mock, and C G Miyada, and R P Gunsalus
September 1983, The Journal of biological chemistry,
M Mock, and C G Miyada, and R P Gunsalus
December 2010, The Journal of biological chemistry,
M Mock, and C G Miyada, and R P Gunsalus
June 1989, Molecular microbiology,
Copied contents to your clipboard!