The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component. 1983

P E Stephens, and M G Darlison, and H M Lewis, and J R Guest

The nucleotide sequence of the aceF gene, which encodes the dihydrolipoamide acetyltransferase component (E2) of the pyruvate dehydrogenase complex of Escherichia coli K12, has been determined using the dideoxy chain-termination method. The aceF gene comprises 1887 base pairs (629 codons excluding the initiation codon AUG); it is preceded by a short intercistronic segment of 14 base pairs containing a good ribosomal binding site, and it is followed closely by a potential rho-independent terminator. The results extend by 1980 base pairs the previously sequenced segment of 3780 base pairs containing the structural gene (aceE) of the pyruvate dehydrogenase component (E1) and they confirm that aceE and aceF are the proximal and distal genes of the ace operon. The amino terminus, carboxy-terminal sequence and amino acid composition of the acetyltransferase subunit predicted from the nucleotide sequence are in excellent agreement with previous studies with the purified protein. The predicted molecular weight (Mr = 65959) confirms experimental values derived from sedimentation equilibrium analysis and indicates that the higher values (78000-89000) that have been reported are due to unusual features of the protein that lead to anomalous mobilities during sodium dodecyl sulphate/polyacrylamide gel electrophoresis and in gel filtration. The primary structure fully supports conclusions, based on limited tryptic proteolysis, that the acetyltransferase subunit possesses two heterologous domains: the lipoyl domain and the subunit binding and catalytic domain. The lipoyl domain corresponds to the amino-terminal segment of the protein. It is acidic and contains three remarkably homologous repeating units of approximately 100 amino acids, each possessing a potential lipoyl binding site and a region that is characteristically rich in alanine and proline residues. The subunit binding and catalytic domain occupies most of the residual polypeptide in the carboxy-terminal segment.

UI MeSH Term Description Entries
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
June 1973, European journal of biochemistry,
P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
November 1988, FEBS letters,
P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
February 1981, European journal of biochemistry,
P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
February 1985, Nucleic acids research,
P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
July 1980, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
P E Stephens, and M G Darlison, and H M Lewis, and J R Guest
May 1971, European journal of biochemistry,
Copied contents to your clipboard!