Clonal growth and serial propagation of rat esophageal epithelial cells. 1983

M S Babcock, and M R Marino, and W T Gunning, and G D Stoner

The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.

Related Publications

M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
October 1983, In vitro,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
February 1996, In vitro cellular & developmental biology. Animal,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
February 1984, In vitro,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
December 1984, In vitro,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
January 1989, Biology of the cell,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
June 1988, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
June 1981, Cancer research,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
June 1985, The Journal of urology,
M S Babcock, and M R Marino, and W T Gunning, and G D Stoner
October 1985, Biotechnology and bioengineering,
Copied contents to your clipboard!