Phenotypic expression of epidermal cells in vitro: a review. 1983

K A Holbrook, and H Hennings

Disaggregated epidermal cells, sheets of epidermis, and explants of partial and full-thickness skin have been grown in cell, organ, and explant cultures. Each type of epidermal sample has also been "cultured" as a graft on a living animal host. The extent of tissue-specific phenotypic expression by the epidermal cell varies with the type of culture and the culture conditions: medium, biologic and pharmacologic additives, substrate, cell density, pH, and temperature. Specific culture conditions can be chosen to select for certain phenotypic traits. In spite of the diversity of conditions that may be used for culture, keratinocytes in cell, explant, and organ cultures undergo a similar pattern of differentiation. They stratify and keratinize, but rarely express a complete program of keratinization. Many of the characteristics associated with this pattern of differentiation are also observed in fetal epidermis during development. In culture, normal tissue architecture is usually absent; cells organize in flattened, loosely associated layers, synthesize a different pattern of keratin polypeptides, form keratohyalin granules only sporadically, and rarely contain lamellar granules. Epidermal differentiation in explant and organ cultures can be evaluated in regions of the explant, epibolic zone, and outgrowth apron. The epidermis of the original explant undergoes hyperproliferation, degeneration, sloughing, and then regeneration of a thin tissue. The cells in the epithelial outgrowth zone stratify and differentiate almost identically with those in cell culture. Neogenesis of structures in the basement-membrane zone can be followed in all three regions of the explant culture. Sheets of epidermis or epidermal cells transplanted onto or into a host animal show the most complete expression of the epidermal phenotype. After a period of hyperplastic growth, the cell layers become established in a pattern nearly identical to that in vivo. A complete granular layer is formed and stratum corneum cells, which are structurally and biochemically equivalent to those in tissue, differentiate. In some instances, the epidermis reconstructed from cells or tissue is indistinguishable from adjacent host epidermis. Experiments that include serial transfer from one culture system to another demonstrate the plasticity of the epidermal cell and its ability to respond variously to its environment.

UI MeSH Term Description Entries
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K A Holbrook, and H Hennings
February 2016, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
K A Holbrook, and H Hennings
January 1966, Proceedings of the National Academy of Sciences of the United States of America,
K A Holbrook, and H Hennings
September 1985, The Journal of pediatrics,
K A Holbrook, and H Hennings
May 2010, Journal of cellular and molecular medicine,
K A Holbrook, and H Hennings
May 1989, The Journal of investigative dermatology,
K A Holbrook, and H Hennings
June 1987, Gan to kagaku ryoho. Cancer & chemotherapy,
K A Holbrook, and H Hennings
November 2015, Investigative ophthalmology & visual science,
K A Holbrook, and H Hennings
May 1982, Somatic cell genetics,
Copied contents to your clipboard!