Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: stereospecificity of proton transfer in the phosphorylation of enzyme I from (Z)-phosphoenolbutyrate. 1983

H Hoving, and T Nowak, and G T Robillard

The stereochemistry of the proton transfer in the reaction of phosphoenolbutyrate with enzyme I has been established. During the reaction of the pure Z isomer of this analogue of phosphoenolpyruvate with enzyme I, to yield phosphoenzyme I and 2-oxobutyrate, the substrate is protonated at C-3 from the 2re,3si face. This stereospecificity was established for the transfer of a proton to (Z)-phospho[3-D]enolbutyrate and for the transfer of a deuteron to (Z)-phospho[3-H]enolbutyrate. The E isomer of phosphoenolbutyrate is not a substrate for enzyme I. Accordingly, the reaction of phosphoenzyme I with 2-oxobutyrate yields exclusively the Z isomer of phosphoenolbutyrate, and only the pro-S proton at C-3 of 2-oxobutyrate is abstracted. A kinetic H/D isotope effect of 6.8 in this reaction demonstrates the rate-limiting nature of the proton-transfer step. The stereochemical analysis of 2-oxo[3(R)-H,D]butyrate and of 2-oxo-[3(S)-H,D]butyrate was carried out by using the pyruvate kinase catalyzed enolization of this compound. This enzymatic enolization, with phosphate as a cofactor, is rapid at neutral pH and is a highly stereospecific reaction: only the pro-R proton at C-3 of 2-oxobutyrate is exchanged with solvent. This reaction was also used to generate the pure 3R and 3S enantiomers of 2-oxo[3-H,D]butyrate. The degree of protonation/deuteration at C-3 of 2-oxobutyrate was detected from the fine structure of the methyl proton nuclear magnetic resonance signal.

UI MeSH Term Description Entries
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D017852 Phosphotransferases (Nitrogenous Group Acceptor) A group of enzymes that catalyzes the transfer of a phosphate group onto a nitrogenous group acceptor. EC 2.7.3.

Related Publications

H Hoving, and T Nowak, and G T Robillard
October 1984, European journal of biochemistry,
Copied contents to your clipboard!