Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease. 1983

G R Jacobson, and C A Lee, and J E Leonard, and M H Saier

The integral membrane protein responsible for the transport and phosphorylation of D-mannitol in Escherichia coli, the mannitol-specific Enzyme II of the phosphotransferase system (Mr = 60,000), has been purified to apparent homogeneity using a modification of a previously published procedure (Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr. (1979) J. Biol. Chem. 254, 249-252). The purified enzyme was dependent on Lubrol PX and phospholipid for maximal activity. It catalyzed both the phosphoenolpyruvate- and the mannitol 1-phosphate-dependent phosphorylation of D-mannitol with high specificity for the accepting sugar and the phosphoryl donor. Both mannitol and mannitol 1-phosphate gave strong substrate inhibition at neutral pH in the transphosphorylation reaction catalyzed by the purified mannitol Enzyme II, while no substrate inhibition by mannitol was observed for the phosphoenolpyruvate-dependent reaction. The purified enzyme did not catalyze hydrolysis of mannitol 1-phosphate, a product of both reactions. Antibody directed against the mannitol Enzyme II inhibited the phosphoenolpyruvate-dependent activity to a greater extent than the transphosphorylation activity. Limited proteolysis with trypsin rapidly inactivated both purified and membrane-bound mannitol Enzyme II, and the purified protein was concomitantly cleaved into fragments with apparent molecular weights of about 29,000. These results show that although the mannitol Enzyme II is an integral membrane protein, a considerable portion of its polypeptide chain must also extend into a hydrophilic environment, presumably the cytoplasm.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D000077423 Polidocanol An alkyl polyglycol ether of LAURYL ALCOHOL, chemically defined as an alcohol ethoxylate having an average alkyl chain of 12–14 carbon atoms, and an ethylene oxide chain of 9 ethylene oxide units. It is used as a detergent, and medically as a local anesthetic, and as a sclerosing agent for the treatment of ESOPHAGEAL AND GASTRIC VARICES and VARICOSE VEINS. Aethoxysclerol,Aethoxysklerol,Aetoxisclerol,Atossisclerol,Atoxysclerol,Brij 30,Brij-30,Dodecyl Ethyleneglycol Monoether,Ethoxysclerol,Hydroxypolyethoxydodecane,Laureth,Laureth 9,Laureth-1,Laureth-4,Laureth-7,Laureth-9,Lauromacrogol,Lauromacrogol 400,Lauromacrogols,Lubrol 12A9,Lubrol-PX,Nonaethylene Glycol Monododecyl Ether,Nonaethyleneglycol Monododecyl Ether,Polyethylene Glycol Monododecyl Ether,Polyethylene Glycol-7-lauryl Ether,Polyoxyethylene 9-lauryl Ether,Polyoxyethylene Lauryl Ether,Polyoxyethylene(4) Lauryl Ether,Polyoxyethylene-4-dodecyl Ether,Polyoxyethylenedodecyl Ether,Tetraethylene Glycol Dodecyl Ether,Tetraethyleneglycol Lauryl Ether,Thesit,alpha-Dodecyl-omega-hydroxypoly(oxy-1,2ethanediyl),Brij30,Dodecyl Ethyleneglycol Monoethers,Ether, Nonaethyleneglycol Monododecyl,Ether, Polyethylene Glycol-7-lauryl,Ether, Polyoxyethylene 9-lauryl,Ether, Polyoxyethylene Lauryl,Ether, Polyoxyethylene-4-dodecyl,Ether, Tetraethyleneglycol Lauryl,Ethyleneglycol Monoether, Dodecyl,Laureth 1,Laureth 4,Laureth 7,Laureths,Lauryl Ether, Tetraethyleneglycol,Lubrol PX,Monododecyl Ether, Nonaethyleneglycol,Monoether, Dodecyl Ethyleneglycol,Nonaethyleneglycol Monododecyl Ethers,Polidocanols,Polyethylene Glycol 7 lauryl Ether,Polyethylene Glycol-7-lauryl Ethers,Polyoxyethylene 4 dodecyl Ether,Polyoxyethylene 9 lauryl Ether,Polyoxyethylene 9-lauryl Ethers,Polyoxyethylene Lauryl Ethers,Polyoxyethylenedodecyl Ethers,Tetraethyleneglycol Lauryl Ethers
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
September 1983, The Journal of biological chemistry,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
September 1983, The Journal of biological chemistry,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
January 1985, Biochemistry,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
February 1987, The Journal of biological chemistry,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
March 1983, The Journal of biological chemistry,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
December 1993, Journal of bioenergetics and biomembranes,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
June 1989, FEMS microbiology reviews,
G R Jacobson, and C A Lee, and J E Leonard, and M H Saier
January 2002, Archives of biochemistry and biophysics,
Copied contents to your clipboard!