45Ca2+ uptake and phospholipid methylation in isolated rat liver microsomes. 1983

N Kraus-Friedmann, and P Zimniak

The effects of glucagon, epinephrine and insulin on hepatic phospholipid methylation were studied. Glucagon, either injected into rats or added to perfused livers, stimulated methylation in subsequently isolated microsomes. Epinephrine also increased phospholipid methylation. Insulin by itself did not influence the rate of the reaction, but, when administered prior to glucagon, it blocked the effect of the latter. The possibility that the observed stimulation of phospholipid methylation might be causally linked to the reported stimulation by glucagon of 45Ca2+ uptake in subsequently isolated liver microsomes was examined. Both the substrate and the competitive inhibitor of the methylation reaction, S-adenosylmethionine and S-adenosylhomocysteine, had profound effect on the rate of phospholipid methylation, without having comparable effects on Ca2+ uptake. S-adenosylmethionine in increasing concentration stimulated methylation four-fold, while no significant changes in 45Ca2+ uptake were seen. S-adenosylhomocysteine did not inhibit 45Ca2+ uptake even at levels causing more than 95% decrease in methylation. In conclusion, while both phospholipid methylation and 45Ca2+ uptake seem to be hormonally controlled, the correlation between these two processes was not sufficient to support the notion that the changes in 45Ca2+ uptake are caused by the changes in phospholipid methylation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine

Related Publications

N Kraus-Friedmann, and P Zimniak
August 1982, The Journal of biological chemistry,
N Kraus-Friedmann, and P Zimniak
August 1985, Chemical & pharmaceutical bulletin,
N Kraus-Friedmann, and P Zimniak
October 1982, Biochimica et biophysica acta,
N Kraus-Friedmann, and P Zimniak
May 1981, International journal of clinical pharmacology, therapy, and toxicology,
N Kraus-Friedmann, and P Zimniak
January 1987, Nature,
N Kraus-Friedmann, and P Zimniak
October 1996, Xenobiotica; the fate of foreign compounds in biological systems,
N Kraus-Friedmann, and P Zimniak
January 1975, Biochemical pharmacology,
Copied contents to your clipboard!