Urinary excretion of prostaglandin E2 and prostaglandin F2alpha in potassium-deficient rats. 1978

V L Hood, and M J Dunn

Potassium-deficiency was induced in rats by dietary deprivation of potassium. The animals became polyuric and urine osmolality decreased more then three-fold compared to controls. Urinary excretion of prostaglandin E2 (PGE2) and prostaglandin F2alpha (PGF2alpha) did not increase during 2 weeks of potassium depletion. Partial inhibition of renal prostaglandin synthesis by meclofenamate did not increase the urine osmolality after water deprivation. These results make unlikely the hypothesis that the polyuria of potassium-deficiency, is the result of enhanced renal synthesis of prostaglandins with subsequent antagonism of the hydro-osmotic effect of vasopressin. Male animals consistently excreted less PGE2 than female animals.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008469 Meclofenamic Acid A non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. It also inhibits prostaglandin biosynthesis. Benzoic acid, 2-((2,6-dichloro-3-methylphenyl)amino)-, monosodium salt, monohydrate,Meclofenamate,Meclofenamate Sodium,Meclofenamate Sodium Anhydrous,Meclofenamate Sodium Monohydrate,Meclomen,Sodium Meclofenamate,Meclofenamate, Sodium
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011141 Polyuria Urination of a large volume of urine with an increase in urinary frequency, commonly seen in diabetes (DIABETES MELLITUS; DIABETES INSIPIDUS). Polyurias
D011191 Potassium Deficiency A condition due to decreased dietary intake of potassium, as in starvation or failure to administer in intravenous solutions, or to gastrointestinal loss in diarrhea, chronic laxative abuse, vomiting, gastric suction, or bowel diversion. Severe potassium deficiency may produce muscular weakness and lead to paralysis and respiratory failure. Muscular malfunction may result in hypoventilation, paralytic ileus, hypotension, muscle twitches, tetany, and rhabomyolysis. Nephropathy from potassium deficit impairs the concentrating mechanism, producing POLYURIA and decreased maximal urinary concentrating ability with secondary POLYDIPSIA. (Merck Manual, 16th ed) Deficiencies, Potassium,Deficiency, Potassium,Potassium Deficiencies
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V L Hood, and M J Dunn
December 1978, Clinical science and molecular medicine. Supplement,
V L Hood, and M J Dunn
July 1983, Clinical science (London, England : 1979),
V L Hood, and M J Dunn
November 1978, The Journal of laboratory and clinical medicine,
V L Hood, and M J Dunn
January 1988, Prostaglandins, leukotrienes, and essential fatty acids,
V L Hood, and M J Dunn
April 1978, Pflugers Archiv : European journal of physiology,
V L Hood, and M J Dunn
December 1978, The American journal of physiology,
V L Hood, and M J Dunn
January 1974, Gynakologische Rundschau,
V L Hood, and M J Dunn
May 1980, Prostaglandins and medicine,
Copied contents to your clipboard!