Purification and properties of phosphorylase from baker's yeast. 1983

J U Becker, and R Wingender-Drissen, and E Schiltz

A rapid, reliable method for purification of phosphorylase, yielding 200-400 mg pure phosphorylase from 8 kg of pressed baker's yeast, is described. The enzyme is free of phosphorylase kinase activity but contains traces of phosphorylase phosphatase activity. Phosphorylase constitutes 0.5-0.8% of soluble protein in various strains of yeast assayed immunochemically. The subunit molecular weight (Mr) of yeast phosphorylase is around 100,000. The enzyme is composed of two subunits in various ratios, differing slightly in molecular weight and N-terminal sequence. Both are active. Only the enzyme species containing the larger subunit can form tetramers and higher oligomers. The activated enzyme is dimeric. Correlated with specific activity (1 to 110 U/mg), phosphorylase contained between less than 0.1 to 0.74 covalently bound phosphate per subunit. Inactive forms of phosphorylase could be activated by phosphorylase kinase and [gamma-32P]ATP with concomitant phosphorylation of a single threonine residue in the aminoterminal region of the large subunit. The small subunit was not labeled. The incorporated phosphate could be removed by yeast phosphorylase phosphatase, resulting in loss of activity of phosphorylase, which could be restored by ATP and phosphorylase kinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011732 Pyridoxal Phosphate This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE). Pyridoxal 5-Phosphate,Pyridoxal-P,Phosphate, Pyridoxal,Pyridoxal 5 Phosphate,Pyridoxal P
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases
D012440 Saccharomyces A genus of ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES. Saccharomyce
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

J U Becker, and R Wingender-Drissen, and E Schiltz
January 1983, The International journal of biochemistry,
J U Becker, and R Wingender-Drissen, and E Schiltz
May 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J U Becker, and R Wingender-Drissen, and E Schiltz
March 1980, European journal of biochemistry,
J U Becker, and R Wingender-Drissen, and E Schiltz
July 1966, Biochimica et biophysica acta,
J U Becker, and R Wingender-Drissen, and E Schiltz
February 1989, Canadian journal of microbiology,
J U Becker, and R Wingender-Drissen, and E Schiltz
November 1981, Biochimica et biophysica acta,
J U Becker, and R Wingender-Drissen, and E Schiltz
September 1967, Archives of biochemistry and biophysics,
J U Becker, and R Wingender-Drissen, and E Schiltz
June 1966, Biochimica et biophysica acta,
J U Becker, and R Wingender-Drissen, and E Schiltz
August 1970, Biochemistry,
J U Becker, and R Wingender-Drissen, and E Schiltz
October 1970, Biochimica et biophysica acta,
Copied contents to your clipboard!