Parasympathetic effects on electrophysiologic properties of cardiac ventricular tissue. 1983

D P Rardon, and J C Bailey

The physiologic importance of parasympathetic influence on the sinoatrial and atrioventricular nodes is well established, but the importance of parasympathetic modulation of ventricular function remains controversial. Recognized effects of muscarinic cholinergic stimulation on ventricular automaticity and ventricular repolarization, the ability of muscarinic cholinergic agonists to antagonize catecholamine effects in the ventricle and proposed mechanisms for these effects are described. Anatomic studies have demonstrated a great abundance of cholinergic nerve endings in association with the ventricular conducting system. Stimulation of the vagus nerve or addition of muscarinic cholinergic agonists suppresses ventricular automaticity in most species and antagonizes isoproterenol-induced action potential shortening and isoproterenol-restored slow response action potentials. In vivo, interactions between the parasympathetic and sympathetic nervous systems occur at multiple levels. Muscarinic cholinergic agonists inhibit release of norepinephrine from sympathetic nerve terminals, inhibit catecholamine-stimulated adenylate cyclase activity and alter cyclic guanosine monophosphate (GMP) and possibly cyclic adenosine monophosphate (AMP) levels. Evidence is also presented that, in vivo, parasympathetic effects on ventricular electrical function might influence the pathophysiologic milieu responsible for initiation or termination of certain ventricular arrhythmias. Vagal influences appear to be protective against certain digitalis-induced arrhythmias and protective in certain experimental acute myocardial infarctions. In human beings, there appears to be tonic vagal tone in the ventricle and vagal stimulation terminates certain types of ventricular tachycardia. The evidence presented supports a physiologic role of parasympathetic stimulation in altering ventricular electrical function.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004071 Digitalis Glycosides Glycosides from plants of the genus DIGITALIS. Some of these are useful as cardiotonic and anti-arrhythmia agents. Included also are semi-synthetic derivatives of the naturally occurring glycosides. The term has sometimes been used more broadly to include all CARDIAC GLYCOSIDES, but here is restricted to those related to Digitalis. Glycosides, Digitalis
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

D P Rardon, and J C Bailey
April 1992, The American journal of cardiology,
D P Rardon, and J C Bailey
June 1979, The American journal of cardiology,
D P Rardon, and J C Bailey
September 1994, Journal of cardiovascular pharmacology,
D P Rardon, and J C Bailey
March 1997, The Journal of pharmacology and experimental therapeutics,
D P Rardon, and J C Bailey
June 1973, The Journal of pharmacology and experimental therapeutics,
D P Rardon, and J C Bailey
May 1974, The Journal of pharmacology and experimental therapeutics,
D P Rardon, and J C Bailey
February 1980, European journal of pharmacology,
D P Rardon, and J C Bailey
June 1977, The Journal of pharmacology and experimental therapeutics,
D P Rardon, and J C Bailey
October 1994, Journal of cardiovascular pharmacology,
D P Rardon, and J C Bailey
January 1983, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!