Instability of a high-copy-number mutant of a miniplasmid derived from broad host range IncP plasmid RK2. 1983

C M Thomas

Mini-RK2 plasmids pCT460 and pCT461 which contain the oriVRK2, trfA and trfB regions of RK2 in addition to tetracycline and kanamycin resistance determinants, have copy numbers of 17 and 35 copies per chromosome equivalent, respectively. The difference in copy number is due to a 56-bp deletion in oriVRK2 in pCT461. In Escherichia coli only pCT461 is markedly unstable in batch culture while both are unstable (although pCT461 is more so) in bacteria on stock plates. The instability of pCT461 in bacteria on stock plates is recA+ dependent and appears to involve loss of plasmid DNA from bacteria rather than selective cell death. After storage of recA+ bacteria carrying pCT461 for a few weeks the remaining antibiotic-resistant bacteria carry a mixture of plasmid DNA species including parental pCT461, transposable element insertion derivatives, and, by far the majority, deletion derivatives. It appears that one particular plasmid region, which includes the kilD gene (which inhibits plasmid maintenance in the absence of korD which, however, is present on pCT460 and pCT461), is responsible for this instability in a gene dosage-dependent way. Most of these deletion derivatives are dependent on pCT461-specified trfA gene (essential for replication) so that they do not displace pCT461 entirely. Their presence reduces the copy number of pCT461, thus reducing the instability, and is probably ultimately responsible for pCT461 survival on stock plates. In many bacteria the same process which gives rise to deletion derivatives may result in degradation of plasmid DNA extensive enough to cause loss of pCT461.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
Copied contents to your clipboard!