Tolerance maintenance depends on persistence of the tolerizing antigen: evidence from transplantation studies on Xenopus laevis. 1983

C Kaye, and J A Schermer, and R Tompkins

In order to assess the role of antigen persistence in the tolerant state, tolerance was induced in Xenopus laevis by the embryonic transplantation of whole eyes or tail tissue. Both types of transplants were seen to heal in and persist, with no signs of immunological incompatibility. At metamorphosis, tail resorption occurred and grafted tail tissue was lost. Eye transplants were maintained through metamorphosis in most eye grafted animals. Eye graft recipients which had maintained the transplant were observed to accept challenge skin allografts from donors of the same genotype as the eye donor in all but one case, while recipients which had lost the eye transplant at metamorphosis or had the eye transplant experimentally removed sometimes did not accept the challenge skin graft. Animals tail grafted as embryos did not accept post metamorphic skin grafts from donors of the same genotype as the tail tissue donor, but rejection was not accelerated. It is proposed that tolerance induction is dependent on the presence of appropriately presented antigen at a time when precursor thymocyte cells are migrating to the thymus, prior to their processing into alloreactive cells, and that tolerance maintenance is dependent upon the persistence of the tolerizing antigen.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013623 Tail An extension of the posterior of an animal body beyond the TORSO. Tails
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

C Kaye, and J A Schermer, and R Tompkins
January 1980, Developmental and comparative immunology,
C Kaye, and J A Schermer, and R Tompkins
November 1982, The Journal of experimental zoology,
C Kaye, and J A Schermer, and R Tompkins
August 1992, Science (New York, N.Y.),
C Kaye, and J A Schermer, and R Tompkins
October 2020, Cold Spring Harbor protocols,
C Kaye, and J A Schermer, and R Tompkins
September 1971, Immunology,
C Kaye, and J A Schermer, and R Tompkins
June 1987, The Journal of experimental medicine,
C Kaye, and J A Schermer, and R Tompkins
December 1974, Biology of reproduction,
C Kaye, and J A Schermer, and R Tompkins
July 1984, Experientia,
C Kaye, and J A Schermer, and R Tompkins
April 1968, Journal of embryology and experimental morphology,
C Kaye, and J A Schermer, and R Tompkins
January 1992, Methods in enzymology,
Copied contents to your clipboard!