Cell survival kinetics in peripheral blood and bone marrow during total body irradiation for marrow transplantation. 1983

B Shank, and M Andreeff, and D Li

Cell survival kinetics in both peripheral blood and in bone marrow have been studied over the time course of hyperfractionated total body irradiation (TBI) for bone marrow transplantation. Our unique TBI regimen allows the study of the in vivo radiation effect uncomplicated by prior cyclophosphamide, since this agent is given after TBI in our cytoreduction scheme. Peripheral blood cell concentrations were monitored with conventional laboratory cell counts and differentials. Absolute bone marrow cell concentrations were monitored by measuring cell concentrations in an aspirate sample and correcting for dilution with blood by a cell cycle kinetic method using cytofluorometry. In the entire group of patients, time to engraftment with donor marrow was found to be 16.6 +/- 4.4 days and more rapid when a nucleated donor cell dose of greater than or equal to 4.0 X 10(8) cells/kg was given. For lymphocytes in peripheral blood in patients in remission, the effective D0 ranged from 373 rad in 10 children less than or equal to 10 y old, to 536 rad in the four patients between 11-17 y old, while n = 1.0 in all groups. There was no trend observed according to age. Granulocytes had a much higher effective D0, approximately 1000 rad in vivo. Absolute nucleated cell concentration in marrow dropped slowly initially, due to an increased lymphocyte concentration in marrow during a concurrent drop in lymphocyte concentration in peripheral blood, but eventually fell on the last day of TBI ranging from 7-44% of the initial marrow nucleated cell concentration. Marrow myeloid elements, however, dropped continuously throughout the course of TBI.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal

Related Publications

B Shank, and M Andreeff, and D Li
July 1999, Oncology (Williston Park, N.Y.),
B Shank, and M Andreeff, and D Li
January 1963, Jaarboek van kankeronderzoek en kankerbestrijding in Nederland. Yearbook for cancer research and fight against cancer in the Netherlands,
B Shank, and M Andreeff, and D Li
September 1994, Bone marrow transplantation,
B Shank, and M Andreeff, and D Li
April 1983, Lancet (London, England),
B Shank, and M Andreeff, and D Li
June 1985, Rinsho hoshasen. Clinical radiography,
B Shank, and M Andreeff, and D Li
June 1987, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
B Shank, and M Andreeff, and D Li
May 1985, Rinsho hoshasen. Clinical radiography,
Copied contents to your clipboard!