Molecular cloning of the Pseudomonas carboxypeptidase G2 gene and its expression in Escherichia coli and Pseudomonas putida. 1983

N P Minton, and T Atkinson, and R F Sherwood

The gene coding for carboxypeptidase G2 was cloned from Pseudomonas sp. strain RS-16 into Escherichia coli W5445 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322. The plasmid isolated, pNM1, was restriction mapped, and the position of the gene on the 5.8-megadalton insert was pinpointed by subcloning. The expression of carboxypeptidase in E. coli was 100-fold lower than in the Pseudomonas sp. strain. When the cloned gene was subcloned into the Pseudomonas vector pKT230 and introduced into Pseudomonas putida 2440, a 30-fold increase in expression over that obtained in E. coli was observed. High expression (up to 5% soluble protein) was obtained in E. coli by subcloning a 3.1-megadalton Bg/II fragment into the BamHI site of pAT153. The increased expression was orientation dependent and is presumed to be due to transcriptional readthrough from the Tc promoter of the vector. Production of carboxypeptidase was shown to be induced (two-fold) by the presence of folic acid, and the mature protein was shown to be located in the periplasmic space of E. coli.

UI MeSH Term Description Entries
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

N P Minton, and T Atkinson, and R F Sherwood
July 1985, Biochemical and biophysical research communications,
N P Minton, and T Atkinson, and R F Sherwood
September 1987, Biochemical and biophysical research communications,
N P Minton, and T Atkinson, and R F Sherwood
December 1998, Annals of the New York Academy of Sciences,
N P Minton, and T Atkinson, and R F Sherwood
February 1989, FEMS microbiology letters,
N P Minton, and T Atkinson, and R F Sherwood
November 1988, Journal of general microbiology,
N P Minton, and T Atkinson, and R F Sherwood
April 1985, Journal of bacteriology,
N P Minton, and T Atkinson, and R F Sherwood
January 1986, The Journal of biological chemistry,
N P Minton, and T Atkinson, and R F Sherwood
February 1986, Journal of bacteriology,
Copied contents to your clipboard!