Evidence that the phr+ gene enhances the ultraviolet resistance of Escherichia coli recA strains in the dark. 1983

K Yamamoto, and Y Fujiwara, and H Shinagawa

An Escherichia coli recA phr+ purA strain was more resistant to ultraviolet radiation than its isogenic derivative recA phr+ purA+ in the absence of photoreactivating light, whereas their nearly isogenic derivative recA phr showed most UV-induced lethality. The amounts of photoreactivating enzyme (PRE) per cell in the recA phr+ purA was higher than in the recA phr+ purA+. The recA phr is defective for photoreactivation. Thus, in the recA strain, UV resistance in the dark increased in proportion to the amounts of PRE per cell, suggesting that PRE participates in the process of dark repair of UV-damaged DNA.

UI MeSH Term Description Entries
D003624 Darkness The absence of light. Darknesses
D004255 Deoxyribodipyrimidine Photo-Lyase An enzyme that catalyzes the reactivation by light of UV-irradiated DNA. It breaks two carbon-carbon bonds in PYRIMIDINE DIMERS in DNA. DNA Photolyase,DNA Photoreactivating Enzyme,Photoreactivating Enzyme,Photoreactivation Enzyme,DNA Photolyases,Deoxyribodipyrimidine Photolyase,Photolyase,Photolyases,Deoxyribodipyrimidine Photo Lyase,Photo-Lyase, Deoxyribodipyrimidine,Photolyase, DNA,Photolyase, Deoxyribodipyrimidine,Photolyases, DNA,Photoreactivating Enzyme, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

K Yamamoto, and Y Fujiwara, and H Shinagawa
January 1984, Mutation research,
K Yamamoto, and Y Fujiwara, and H Shinagawa
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
K Yamamoto, and Y Fujiwara, and H Shinagawa
February 1987, Photochemistry and photobiology,
K Yamamoto, and Y Fujiwara, and H Shinagawa
August 1987, Molecular & general genetics : MGG,
K Yamamoto, and Y Fujiwara, and H Shinagawa
July 1991, Molecular & general genetics : MGG,
K Yamamoto, and Y Fujiwara, and H Shinagawa
March 2005, BioTechniques,
K Yamamoto, and Y Fujiwara, and H Shinagawa
January 1993, Biochimie,
K Yamamoto, and Y Fujiwara, and H Shinagawa
January 1980, Molecular & general genetics : MGG,
K Yamamoto, and Y Fujiwara, and H Shinagawa
December 1979, Journal of bacteriology,
Copied contents to your clipboard!