Electrophysiologic basis for arrhythmias in ischemic heart disease. 1984

R Lazzara, and B J Scherlag

Substantial gains have been made toward clarifying the mechanisms of arrhythmia in ischemia in animal models. After coronary occlusion in the dog, ischemic myocardial cells have reduced resting potential and slowed and diminished upstrokes of action potentials due to depression of fast channels. As a result, conduction is slow and irregular, especially at shorter cycle lengths, because refractoriness is altered by a delay in recovery of the fast channels beyond the completion of repolarization. These abnormalities occur during the acute phase of arrhythmia in the first half hour after occlusion and persist in surviving the subepicardial layers of myocardial cells for days to weeks. Reentry has been mapped in these surviving layers. Reentrant circuits form around regions of functional block formed by interfaces between responding and refractory myocardium. Standard antiarrhythmic agents generally are fast-channel blockers that further depress conduction and prolong refractoriness in ischemic tissue, causing block in slow conducting segments of the reentry circuits. However, antiarrhythmic agents may cause or accentuate reentrant arrhythmias by virtue of the same depressant actions. The greater likelihood of antiarrhythmic agents suppressing rather than producing reentrant arrhythmias may be due to enhanced depressant effects of antiarrhythmic agents on very slowly conducting tissues that are involved in reentry circuits. After the acute phase, arrhythmias occurring 1 to 4 days after coronary occlusion are probably largely automatic, although the potential for reentry remains if the cycle length is shortened. Abnormally enhanced automaticity and triggered activity are demonstrable in the surviving Purkinje network in regions of infarction, but the role of these phenomena in vivo has not been clarified.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Lazzara, and B J Scherlag
January 1974, Heart & lung : the journal of critical care,
R Lazzara, and B J Scherlag
January 1986, Acta medica Scandinavica. Supplementum,
R Lazzara, and B J Scherlag
August 1996, Nihon rinsho. Japanese journal of clinical medicine,
R Lazzara, and B J Scherlag
November 2011, Nihon rinsho. Japanese journal of clinical medicine,
R Lazzara, and B J Scherlag
August 1996, The American journal of cardiology,
R Lazzara, and B J Scherlag
May 1977, Angiology,
R Lazzara, and B J Scherlag
September 1983, International journal of cardiology,
R Lazzara, and B J Scherlag
May 1991, Annals of internal medicine,
R Lazzara, and B J Scherlag
January 1974, Acta cardiologica,
R Lazzara, and B J Scherlag
October 1980, Kardiologiia,
Copied contents to your clipboard!