Familial hyperproinsulinemia. Two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. 1984

D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager

Familial hyperproinsulinemia, a hereditary syndrome in which individuals secrete high amounts of 9,000-mol wt proinsulin-like material, has been identified in two unrelated cohorts. Separate analysis of the material from each of the two cohorts had suggested that the proinsulin-like peptide was a conversion intermediate in which the C-peptide remained attached to the insulin B-chain in one case, whereas it was a conversion intermediate in which the C-peptide remained attached to the insulin A-chain in the other. To reinvestigate this apparent discrepancy, we have now used chemical, biochemical, immunochemical, and physical techniques to compare in parallel the structures of the immunoaffinity chromatography-purified, proinsulin-like peptides isolated from the serum of members of both families. Our results show that affected individuals in both cohorts secrete two-chained intermediates of proinsulin conversion in which the COOH-terminus of the C-peptide is extended by the insulin A-chain and from which the insulin B-chain is released by oxidative sulfitolysis. Analysis of the conversion intermediates by reverse-phase high-performance liquid chromatography using two different buffer systems showed that the proinsulin-related peptides from both families elute at a single position very near that of the normal intermediate des-Arg31, Arg32-proinsulin. Further, treatment of these peptides with acetic anhydride prevented trypsin-catalyzed cleavage of the C-peptide from the insulin A-chain, a result demonstrating the presence of Lys64 and the absence of Arg65 in both abnormal forms. We conclude that individuals from both cohorts with familial hyperproinsulinemia secret very similar or identical intermediates of proinsulin conversion in which the C-peptide remains attached to the insulin A chain and in which Arg65 has been replaced by another amino acid residue.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000089 Acetic Anhydrides Compounds used extensively as acetylation, oxidation and dehydrating agents and in the modification of proteins and enzymes. Anhydrides, Acetic

Related Publications

D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
September 1984, The New England journal of medicine,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
June 1979, Proceedings of the National Academy of Sciences of the United States of America,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
December 1986, Metabolism: clinical and experimental,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
July 1985, The Journal of clinical investigation,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
October 1985, The Journal of clinical investigation,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
March 1991, Diabetologia,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
May 1992, Diabetes care,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
September 2003, Molecular endocrinology (Baltimore, Md.),
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
July 1988, The Journal of clinical endocrinology and metabolism,
D C Robbins, and S E Shoelson, and A H Rubenstein, and H S Tager
March 1996, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!