Ethanol metabolism in vivo by the microsomal ethanol-oxidizing system in deermice lacking alcohol dehydrogenase (ADH). 1984

Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber

To assess the importance of non-ADH ethanol metabolism, ADH-negative and ADH-positive deermice were fed liquid diets containing ethanol or isocaloric carbohydrate for 2-4 weeks. Blood ethanol disappearance rate increased significantly after chronic ethanol feeding in both strains. Although at low ethanol concentrations (between 5 and 10 mM) there was no significant difference between ethanol-fed and pair-fed control animals, at high ethanol concentrations (between 40 and 70 mM) blood ethanol elimination rates were increased significantly after chronic ethanol feeding in both ADH-positive and ADH-negative animals. There was no significant effect of the catalase inhibitor 3-amino-1,2,4-triazole on the ethanol elimination/rates in both strains. Whereas catalase and ADH activities were not altered after chronic ethanol treatment, the activity of the microsomal ethanol-oxidizing system (MEOS) was enhanced three to four times in both strains, and microsomal cytochrome P-450 content was also increased significantly. When MEOS activity was expressed per cytochrome P-450 content, it was higher in ADH-negative than in ADH-positive animals, and it increased after ethanol administration. When microsomal proteins were separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, ethanol-fed animals had a distinct band which reflected the increase in microsomal cytochrome P-450 content and seemed to reflect a unique form of cytochrome P-450 induced by ethanol. Thus, despite the absence of the ADH pathway, a large amount of ethanol was metabolized by MEOS in ADH-negative deermice; this was associated with increased blood ethanol elimination rates, enhanced MEOS activity, and quantitative and qualitative changes of cytochrome P-450.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010542 Peromyscus A genus of the subfamily SIGMODONTINAE consisting of 49 species. Two of these are widely used in medical research. They are P. leucopus, or the white-footed mouse, and P. maniculatus, or the deer mouse. Mice, Deer,Mice, White-Footed,Mouse, Deer,Mouse, White-Footed,Deer Mice,Deer Mouse,Mice, White Footed,Mouse, White Footed,White-Footed Mice,White-Footed Mouse
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol

Related Publications

Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
July 1988, Biochemical pharmacology,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
May 1987, Archives of biochemistry and biophysics,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
January 1985, Alcohol (Fayetteville, N.Y.),
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
May 1989, Archives of biochemistry and biophysics,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
January 1987, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
December 1986, Biochemical pharmacology,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
August 1976, Archives of biochemistry and biophysics,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
August 1993, Alcoholism, clinical and experimental research,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
August 1985, Biochimica et biophysica acta,
Y Shigeta, and F Nomura, and S Iida, and M A Leo, and M R Felder, and C S Lieber
May 1972, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!