Symposium on the management of ventricular dysrhythmias. Concept of reentry versus automaticity. 1984

B I Sasyniuk

Arrhythmias can result from abnormal impulse initiation or conduction. Abnormal initiation results from either automaticity or triggered activity. Enhanced automaticity may be due to a normal automatic mechanism (a normal property of the sinus node and specialized conducting fibers) or to an abnormal mechanism such as automaticity in depolarized fibers. Triggered activity is caused by afterdepolarizations that occur either during repolarization (early afterdepolarization) or after repolarization is complete (delayed afterdepolarization). Triggered activity due to delayed afterdepolarizations is dependent on critical heart rates. Overdrive pacing may distinguish between normal and abnormal automaticity. Antiarrhythmic drugs can alter arrhythmias that result from abnormal impulse initiation. To suppress an arrhythmia resulting from abnormal impulse generation, a drug may (1) suppress the abnormal automatic mechanism, i.e., specific effect on ionic current; (2) suppress afterdepolarizations; (3) depress conduction in tissue surrounding automatic focus; or (4) modify refractory period of tissue in and around automatic focus. Abnormal impulse conduction results in reentrant excitation. Conditions necessary for reentry include a combination of unidirectional block and slowed conduction. A reentrant mechanism can be determined by an anatomically defined circuit or solely by the functional properties of the tissue (leading circle mechanism). Circus movement reentry around an anatomic obstacle may respond to antiarrhythmic drugs differently from reentry caused by a leading circle mechanism. Initiation and perpetuation of a reentry mechanism depends on a delicate interplay between conduction velocity and duration of the functional refractory period in the reentry circuit.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Copied contents to your clipboard!