Effect of continuous positive airway pressure on lung mechanics during high-frequency jet ventilation. 1984

M D Schlachter, and M E Perry

Six mongrel dogs were studied in a body plethysmograph to ascertain the effects of continuous positive airway pressure (CPAP) during high-frequency jet ventilation (HFJV), using an open system allowing gas entrainment. Increases in CPAP significantly reduced tidal volume. Increases in HFJV and inspiratory fraction caused progressively larger increases in functional residual capacity (FRC). Higher levels of CPAP dramatically reduced HFJV's effect on FRC, but lower levels of CPAP augmented this effect. At constant CPAP, tidal volume correlated well with the difference between peak airway pressure and CPAP, while the FRC change was correlated with the difference between end-expiratory pressure and CPAP. The relationship between end-expiratory airway pressure and total change in FRC was predictable from lung compliance at all levels of CPAP.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D010993 Plethysmography, Whole Body Measurement of the volume of gas in the lungs, including that which is trapped in poorly communicating air spaces. It is of particular use in chronic obstructive pulmonary disease and emphysema. (Segen, Dictionary of Modern Medicine, 1992) Whole Body Plethysmography,Body Plethysmographies, Whole,Body Plethysmography, Whole,Plethysmographies, Whole Body,Whole Body Plethysmographies
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005652 Functional Residual Capacity The volume of air remaining in the LUNGS at the end of a normal, quiet expiration. It is the sum of the RESIDUAL VOLUME and the EXPIRATORY RESERVE VOLUME. Common abbreviation is FRC. Capacities, Functional Residual,Capacity, Functional Residual,Functional Residual Capacities,Residual Capacities, Functional,Residual Capacity, Functional
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013990 Tidal Volume The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T. Tidal Volumes,Volume, Tidal,Volumes, Tidal

Related Publications

M D Schlachter, and M E Perry
January 1987, Revista espanola de anestesiologia y reanimacion,
M D Schlachter, and M E Perry
September 1984, Critical care medicine,
M D Schlachter, and M E Perry
October 1987, Journal of applied physiology (Bethesda, Md. : 1985),
M D Schlachter, and M E Perry
November 1989, British journal of anaesthesia,
M D Schlachter, and M E Perry
February 1983, Critical care medicine,
Copied contents to your clipboard!