The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids. 1978

B A Wallace, and D M Engelman

We have studied the influence of changes in lipid organization on the planar distribution of two classes of membrane proteins: integral proteins which have amino groups exposed to labelling at the membrane surface by the biotinavidin-ferritin procedure, and those proteins which penetrate the lipid bilayer sufficiently to be seen as intramembranous particles by freeze-fracture electron-microscopy. When the membranes are examined at temperatures below the lipid phase transition, the first class is dispersed and the second patched. At temperatures in the middle of the transition range, both classes are patched. At temperatures just above the phase transition the first class is dispersed and the second patched, and at temperatures well above the transition both classes are dispersed. Freeze-etch studies of avidin-ferritin-labeled membranes confirmed that the distribution seen by the labeling and the freeze-fracture techniques coexist in single membranes. Thus, there exist two distinct classes of membrane proteins with differential organizational responses to the lipid state.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze
D000128 Acholeplasma laidlawii An organism originally isolated from sewage, manure, humus, and soil, but recently found as a parasite in mammals and birds. Mycoplasma laidlawii
D001360 Avidin A specific protein in egg albumin that interacts with BIOTIN to render it unavailable to mammals, thereby producing biotin deficiency.
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property

Related Publications

B A Wallace, and D M Engelman
April 1985, The Journal of biological chemistry,
B A Wallace, and D M Engelman
April 1986, European journal of biochemistry,
B A Wallace, and D M Engelman
July 2011, The Journal of biological chemistry,
B A Wallace, and D M Engelman
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
B A Wallace, and D M Engelman
October 1977, Infection and immunity,
B A Wallace, and D M Engelman
December 2001, Current microbiology,
Copied contents to your clipboard!