Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study. 1984

D G Ferguson, and H W Schwartz, and C Franzini-Armstrong

Isolated heavy sarcoplasmic reticulum vesicles retain junctional specializations (feet) on their outer surface. We have obtained en face three-dimensional views of the feet by shadowing and replicating the surfaces of freeze-dried isolated vesicles. Feet are clearly visible as large structures located on raised platforms. New details of foot structure include a four subunit structure and the fact that adjacent feet do not abut directly corner to corner but are offset by half a subunit. Feet aligned within rows were observed to be rotated at a slight angle off the long axis of the row creating a center-to-center spacing (32.5 nm) slightly less than the average diagonal of the feet (35.3 nm). Comparison with previous information from thin sections and freeze-fracture showed that this approach to the study of membranes faithfully preserves structure and allows better visualization of surface details than either thin-sectioning or negative-staining.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005612 Freeze Drying Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products. Lyophilization,Drying, Freeze,Dryings, Freeze,Freeze Dryings,Lyophilizations
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006652 Histological Techniques Methods of preparing tissue for examination and study of the origin, structure, function, or pathology. Histologic Technic,Histologic Technics,Histologic Technique,Histologic Techniques,Histological Technics,Technic, Histologic,Technics, Histologic,Technique, Histologic,Techniques, Histologic,Histological Technic,Histological Technique,Technic, Histological,Technics, Histological,Technique, Histological,Techniques, Histological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied

Related Publications

D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
April 1983, Journal of muscle research and cell motility,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
January 1993, Journal of structural biology,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
April 1977, Journal of ultrastructure research,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
July 1987, The Journal of cell biology,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
May 1978, Journal of microscopy,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
March 1985, European journal of cell biology,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
February 1990, The Journal of membrane biology,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
December 1967, Nature,
D G Ferguson, and H W Schwartz, and C Franzini-Armstrong
July 1985, Experientia,
Copied contents to your clipboard!