Mercurial-promoted Zn2+ release from Escherichia coli aspartate transcarbamoylase. 1984

J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg

The release of Zn2+ from aspartate transcarbamoylase (ATCase; c6r6) upon challenge by p-hydroxymercuriphenylsulfonate (PMPS) has been studied using the sensitive, high-affinity metallochromic indicator 4-(2-pyridylazo)resorcinol at pH 7.0. When the--SH group of each catalytic (c) chain is protected, 1 Zn2+ is released for every 4 eq of PMPS added to ATCase during titration of the 24--SH groups of regulatory (r) chains. Moreover, the release of Zn2+ is a linear function of PMPS added, indicating that the rate-limiting step in Zn2+ release is mercurial attack on the 1st of the 4 r--SH groups bonded tetrahedrally to Zn2+ in an r chain near c:r contacts. Dissociation of ATCase is linked to Zn2+ release and mercaptide formation; e.g. upon addition of 4 eq of PMPS to ATCase in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) buffer, 1/6th of ATCase is dissociated to c3 and r2 subunits at approximately 83% of the rate of Zn2+ release, with no accumulation of the c6r4 intermediate as is observed in KPO4 buffer. Adding less than or equal to 4 PMPS/ATCase, the release of Zn2+ is first-order in [PMPS] and is virtually independent of [ATCase] with an activation energy of 18 kcal/mol. With large excesses of PMPS, stopped-flow traces show a lag period followed by pseudo first-order release of Zn2+ from ATCase and the reaction order in [PMPS] = approximately 1.3. Under these conditions, PMPS has a chaotropic effect on ATCase; the activation energy for Zn2+ release is much lower than that obtained with limiting PMPS and is increased by the presence of phosphate or active-site ligand from 6.6 to approximately 12 kcal/mol. A reasonable explanation of the observed kinetic data is that the organomercurial reagent binds reversibly to nitrogenous side chain groups in an ATCase molecule prior to the rate-limiting reaction with a sulfhydryl group.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010663 Phenylmercury Compounds Organic mercury compounds in which the mercury is attached to a phenyl group. Often used as fungicides and seed treatment agents. Phenyl Mercury Compounds,Phenylmercurials,Compounds, Phenyl Mercury,Compounds, Phenylmercury,Mercury Compounds, Phenyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001221 Aspartate Carbamoyltransferase An enzyme that catalyzes the conversion of carbamoyl phosphate and L-aspartate to yield orthophosphate and N-carbamoyl-L-aspartate. (From Enzyme Nomenclature, 1992) EC 2.1.3.2. Aspartate Transcarbamylase,Co(II)-Aspartate Transcarbamoylase,Ni(II)-Aspartate Transcarbamoylase,Carbamoyltransferase, Aspartate,Transcarbamylase, Aspartate
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.

Related Publications

J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
January 1990, FEBS letters,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
January 1978, Methods in enzymology,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
January 1983, Transactions of the New York Academy of Sciences,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
October 1980, Biophysical journal,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
July 1990, Biochemistry,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
March 2012, Accounts of chemical research,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
March 2012, Archives of biochemistry and biophysics,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
February 2009, Bioorganic & medicinal chemistry letters,
J B Hunt, and S H Neece, and H K Schachman, and A Ginsburg
August 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!