Application of high-performance liquid chromatographic techniques to the separation of ribosomal proteins of different organisms. 1984

R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold

The ribosomal proteins from Escherichia coli, Bacillus stearothermophilus and Methanococcus vannielii were separated by size-exclusion, ion-exchange and reversed-phase high-performance liquid chromatography (HPLC), employing new column materials, different gradient systems, and preparative columns, respectively. The purity of the isolated proteins was analysed by one- and two-dimensional gel electrophoresis and by direct micro-sequencing. The separation of ribosomal proteins could be improved by employing propanol gradients in combination with Vydac reversed-phase columns. From the E. coli ribosome, fifteen S and twenty-three L proteins were isolated in sequencer purity by this method. In addition, ion-exchange HPLC was proven to be useful for isolating ribosomal proteins under native conditions: six S proteins and sixteen L proteins from E. coli could be purified. Some of these proteins were not isolated by the reversed-phase procedures, e.g. proteins L9, L14 and L21.

UI MeSH Term Description Entries
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001411 Geobacillus stearothermophilus A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products. Bacillus stearothermophilus,Bacillus thermoliquefaciens
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D019605 Euryarchaeota A phylum of ARCHAEA comprising at least seven classes: Methanobacteria, Methanococci, Halobacteria (extreme halophiles), Archaeoglobi (sulfate-reducing species), Methanopyri, and the thermophiles: Thermoplasmata, and Thermococci. Archaeoglobi,Halobacteria,Methanoococci,Methanopyri,Thermococci,Thermoplasmata,Methanobacteria

Related Publications

R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
January 1988, Methods in enzymology,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
February 1990, Journal of chromatography,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
July 1979, Journal of chromatography,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
January 1988, Methods in enzymology,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
April 1989, Journal of chromatography,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
January 1989, Journal of chromatography,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
July 1987, Journal of chromatography,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
December 1989, Analytical biochemistry,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
January 1986, Methods in enzymology,
R M Kamp, and A Bosserhoff, and D Kamp, and B Wittmann-Liebold
February 1995, Journal of chromatography. B, Biomedical applications,
Copied contents to your clipboard!