Distribution of body fluids: local mechanisms guarding interstitial fluid volume. 1984

K Aukland

The plasma volume is determined by fluid influx through drinking and outflux by renal excretion. Both fluxes are regulated according to plasma volume and composition through arterial pressure, osmoreceptors and vascular stretch receptors. As to the remaining part of the extracellular volume, the interstitial space, there is no evidence that its volume (IFV), pressure or composition are sensed in such a way as to influence water intake or excretion. Nevertheless, IFV is clearly regulated, often pari passu with the regulation of plasma volume. However, there are many exceptions to parallel changes of the two compartments, indicating the existence of automatic, local mechanisms guarding the net transfer of fluid between plasma and interstitium. Thus, a rise in arterial and/or venous pressure, tending to increase capillary pressure and net filtration, is counteracted by changes in the "Starling forces": hydrostatic and colloid osmotic pressures of capillary blood and interstitial fluid. These "oedemapreventing mechanisms" (A. C. Guyton) may be listed as follows: Vascular mechanisms, modifying capillary pressure or interstitial fluid pressure (IFP). Increased transmural vascular pressure elicits precapillary constriction and thereby reduces the rise in capillary pressure. Counteracts formation of leg oedema in orthostasis. Venous expansion transmits pressure to the interstitium in encapsulated organs (brain, bone marrow, rat tail). Mechanisms secondary to increased net filtration, A rise in IFV will increase IFP, and thereby oppose further filtration. Favoured by lowcompliant interstitium. Reduction of interstitial COP through dilution and/or washout of interstitial proteins. A new steady state depends on increased lymph flow. Increased lymph flow permits a rise in net capillary filtration pressure. Low blood flow and high filtration fraction will increase local capillary COP.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008208 Lymphatic System A system of organs and tissues that process and transport immune cells and LYMPH. Lymphatic Systems
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009404 Nephrotic Syndrome A condition characterized by severe PROTEINURIA, greater than 3.5 g/day in an average adult. The substantial loss of protein in the urine results in complications such as HYPOPROTEINEMIA; generalized EDEMA; HYPERTENSION; and HYPERLIPIDEMIAS. Diseases associated with nephrotic syndrome generally cause chronic kidney dysfunction. Childhood Idiopathic Nephrotic Syndrome,Frequently Relapsing Nephrotic Syndrome,Multi-Drug Resistant Nephrotic Syndrome,Pediatric Idiopathic Nephrotic Syndrome,Steroid-Dependent Nephrotic Syndrome,Steroid-Resistant Nephrotic Syndrome,Steroid-Sensitive Nephrotic Syndrome,Multi Drug Resistant Nephrotic Syndrome,Nephrotic Syndrome, Steroid-Dependent,Nephrotic Syndrome, Steroid-Resistant,Nephrotic Syndrome, Steroid-Sensitive,Nephrotic Syndromes,Steroid Dependent Nephrotic Syndrome,Steroid Resistant Nephrotic Syndrome,Steroid Sensitive Nephrotic Syndrome,Steroid-Dependent Nephrotic Syndromes,Steroid-Resistant Nephrotic Syndromes,Steroid-Sensitive Nephrotic Syndromes,Syndrome, Nephrotic,Syndrome, Steroid-Sensitive Nephrotic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D010953 Plasma Volume Volume of PLASMA in the circulation. It is usually measured by INDICATOR DILUTION TECHNIQUES. Blood Plasma Volume,Blood Plasma Volumes,Plasma Volumes,Volume, Blood Plasma,Volume, Plasma,Volumes, Blood Plasma,Volumes, Plasma
D011187 Posture The position or physical attitude of the body. Postures
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body

Related Publications

K Aukland
January 1952, Bulletin de la Societe francaise de dermatologie et de syphiligraphie,
K Aukland
June 1977, ZFA. Zeitschrift fur Allgemeinmedizin,
K Aukland
October 1978, Nursing times,
K Aukland
January 1954, Il Policlinico. Sezione chirurgica,
K Aukland
January 1952, Bulletin de la Societe francaise de dermatologie et de syphiligraphie,
K Aukland
January 1982, Nihon rinsho. Japanese journal of clinical medicine,
K Aukland
January 1957, British medical bulletin,
K Aukland
January 2005, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!