Visualization of drug-nucleic acid interactions at atomic resolution. VIII. Structures of two ethidium/dinucleoside monophosphate crystalline complexes containing ethidium: cytidylyl(3'-5') guanosine. 1984

S C Jain, and H M Sobell
Department of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642.

This paper describes two complexes containing ethidium and the dinucleoside monophosphate, cytidylyl(3'-5')guanosine (CpG). Both crystals are monoclinic, space group P2l, with unit cell dimensions as follows: modification 1: a = 13.64 A, b = 32.16 A, c = 14.93 A, beta = 114.8 degrees and modification 2: a = 13.79 A, b = 31.94 A, c = 15.66 A, beta = 117.5 degrees. Each structure has been solved to atomic resolution and refined by Fourier and least squares methods; the first has been refined to a residual of 0.187 on 1,903 reflections, while the second has been refined to a residual of 0.187 on 1,001 reflections. The asymmetric unit in both structures contains two ethidium molecules and two CpG molecules; the first structure has 30 water molecules (a total of 158 non-hydrogen atoms), while the second structure has 19 water molecules (a total of 147 non-hydrogen atoms). Both structures demonstrate intercalation of ethidium between base-paired CpG dimers. In addition, ethidium molecules stack on either side of the intercalated duplex, being related by a unit cell translation along the a axis. The basic feature of the sugar-phosphate chains accompanying ethidium intercalation in both structures is: C3' endo (3'-5') C2' endo. This mixed sugar-puckering pattern has been observed in all previous studies of ethidium intercalation and is a feature common to other drug-nucleic acid structural studies carried out in our laboratory. We discuss this further in this paper and in the accompanying papers.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015226 Dinucleoside Phosphates A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates. Bis(5'-Nucleosidyl)Oligophosphates,Bis(5'-Nucleosidyl)Phosphates,Deoxydinucleoside Phosphates,Dinucleoside Diphosphates,Dinucleoside Monophosphates,Dinucleoside Oligophosphates,Dinucleoside Tetraphosphates,Dinucleoside Triphosphates,Bis(5'-Nucleosidyl)Tetraphosphate,Dinucleoside Polyphosphates,Diphosphates, Dinucleoside,Monophosphates, Dinucleoside,Oligophosphates, Dinucleoside,Phosphates, Deoxydinucleoside,Phosphates, Dinucleoside,Polyphosphates, Dinucleoside,Tetraphosphates, Dinucleoside,Triphosphates, Dinucleoside
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

S C Jain, and H M Sobell
June 1971, The Journal of biological chemistry,
S C Jain, and H M Sobell
June 1972, The New England journal of medicine,
S C Jain, and H M Sobell
September 1995, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!