Adaptive response of Bacillus subtilis to N-methyl-N'-nitro-N-nitrosoguanidine. 1983

C T Hadden, and R S Foote, and S Mitra

Cell extracts of Bacillus subtilis contain a methyltransferase that appears to remove the O6-methyl group from O6-methylguanine in DNA in situ. This reaction proceeds in a stoichiometric fashion, as in Escherichia coli. However, the basal level of the enzyme (approximately 240 molecules per cell) is significantly higher in B. subtilis than in E. coli. In addition, the methyltransferase level increases by an order of magnitude as a result of de novo protein synthesis after adaptive treatment with a low concentration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), as in E. coli. Concomitant with adaptation, B. subtilis cells become more resistant to both killing and mutagenesis by a challenge dose of N-methyl-N'-nitro-N-nitrosoguanidine. We present evidence to support the hypothesis that the majority of N-methyl-N'-nitro-N-nitrosoguanidine-induced mutations in B. subtilis are of the guanine-to-adenine transition type.

UI MeSH Term Description Entries
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006147 Guanine
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D019853 O(6)-Methylguanine-DNA Methyltransferase An enzyme that transfers methyl groups from O(6)-methylguanine, and other methylated moieties of DNA, to a cysteine residue in itself, thus repairing alkylated DNA in a single-step reaction. EC 2.1.1.63. Methylated-DNA-Protein-Cysteine S-Methyltransferase,O(6)-AGT,O(6)-Methylguanine Methyltransferase,DNA Repair Methyltransferase I,DNA Repair Methyltransferase II,Guanine-O(6)-Alkyltransferase,O(6)-Alkylguanine-DNA Alkyltransferase,O(6)-MeG-DNA Methyltransferase,O(6)-Methylguanine DNA Transmethylase,Methylated DNA Protein Cysteine S Methyltransferase,S-Methyltransferase, Methylated-DNA-Protein-Cysteine

Related Publications

C T Hadden, and R S Foote, and S Mitra
February 1987, Mutation research,
C T Hadden, and R S Foote, and S Mitra
August 1970, Mutation research,
C T Hadden, and R S Foote, and S Mitra
October 1972, Biochemical and biophysical research communications,
C T Hadden, and R S Foote, and S Mitra
January 1990, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
C T Hadden, and R S Foote, and S Mitra
June 2004, Mutation research,
C T Hadden, and R S Foote, and S Mitra
January 2004, Report on carcinogens : carcinogen profiles,
C T Hadden, and R S Foote, and S Mitra
January 2002, Report on carcinogens : carcinogen profiles,
C T Hadden, and R S Foote, and S Mitra
September 1975, Mutation research,
Copied contents to your clipboard!