Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. 1983

F Fischer, and W Zillig, and K O Stetter, and G Schreiber

Several types of extremely thermophilic archaebacteria have recently been isolated from solfataric water holes, hot springs and hot sea floors. It has been shown that some of them can live using sulphur respiration of reduced carbon substrates as a source of energy, a type of metabolism previously described for the eubacterium Desulfuromonas. We report here that several extremely thermophilic archaebacteria can live with carbon dioxide as their sole carbon source, obtaining energy from the oxidation of hydrogen by sulphur, producing hydrogen sulphide. They are thus capable of a new type of anaerobic, purely chemolithoautotrophic metabolism, a possible primaeval mode of life.

UI MeSH Term Description Entries
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013455 Sulfur An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine. Sulfur-16,Sulfur 16

Related Publications

F Fischer, and W Zillig, and K O Stetter, and G Schreiber
December 1991, Biochimie,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
January 1992, Biochemical Society symposium,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
February 1990, Journal of biomolecular structure & dynamics,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
May 1987, Science (New York, N.Y.),
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
May 1988, Applied and environmental microbiology,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
March 1999, Journal of microbiological methods,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
March 1990, Applied and environmental microbiology,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
December 1991, Microbial ecology,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
September 1988, Molecular & general genetics : MGG,
F Fischer, and W Zillig, and K O Stetter, and G Schreiber
January 2011, Extremophiles : life under extreme conditions,
Copied contents to your clipboard!