The effect of chemical mutagens on purine and pyrimidine nucleotide biosynthesis. 1983

E Volkin, and M E Boling, and W H Lee, and M H Jones

Nucleotide biosynthesis in Novikoff hepatoma cells is markedly altered by a variety of chemical mutagens, whether the mechanism of mutagenesis is by base substitution, covalent binding (adduct formation), intercalation, or cross-linking of DNA. The compounds investigated (N-methyl-N'-nitro-N-nitrosoguanidine, 4-nitroquinoline 1-oxide, 9-aminoacridine, and mitomycin C), at concentrations that cause some inhibition of RNA and DNA synthesis, bring about a large increase in the pool levels of all four nucleoside triphosphates. At the same time, reactions leading to the synthesis of CTP from exogenous uridine and GTP and ATP from exogenous hypoxanthine are severely inhibited. The formation of UTP from uridine and ATP from adenosine, by more direct phosphorylation reactions, appears relatively unaffected. The increase in nucleotide pool size cannot be accounted for by a corresponding increase in de novo purine and pyrimidine nucleotide synthesis, as experiments with labeled formate and aspartate show similar inhibitions by the mutagens. With the salvage precursors, [3H]uridine and [3H]hypoxanthine, the mutagens can produce a widely divergent reduction in the labeling of RNA-CMP versus RNA-UMP and of RNA-GMP versus RNA-AMP, mostly a result of these agents causing large differences in the specific activities of the respective triphosphate precursors. These observations suggest that, in addition to the reactions with DNA, nucleotide biosynthesis could be another important biochemical target of chemical mutagens.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D003570 Cytidine Triphosphate Cytidine 5'-(tetrahydrogen triphosphate). A cytosine nucleotide containing three phosphate groups esterified to the sugar moiety. CTP,CRPPP,Magnesium CTP,Mg CTP,Triphosphate, Cytidine
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

E Volkin, and M E Boling, and W H Lee, and M H Jones
January 1992, Parazitologiia,
E Volkin, and M E Boling, and W H Lee, and M H Jones
October 1978, The Journal of biological chemistry,
E Volkin, and M E Boling, and W H Lee, and M H Jones
June 1978, The Biochemical journal,
E Volkin, and M E Boling, and W H Lee, and M H Jones
January 2002, The arabidopsis book,
E Volkin, and M E Boling, and W H Lee, and M H Jones
January 1991, Advances in experimental medicine and biology,
E Volkin, and M E Boling, and W H Lee, and M H Jones
March 2003, Physiologia plantarum,
E Volkin, and M E Boling, and W H Lee, and M H Jones
January 2011, Advances in pharmacology (San Diego, Calif.),
E Volkin, and M E Boling, and W H Lee, and M H Jones
June 1971, Minnesota medicine,
E Volkin, and M E Boling, and W H Lee, and M H Jones
January 2006, Annual review of plant biology,
E Volkin, and M E Boling, and W H Lee, and M H Jones
January 1976, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
Copied contents to your clipboard!