Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomeruli. 1983

J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou

Glomeruli isolated from murine and human renal cortex metabolize arachidonic acid to prostaglandins via the cyclooxygenase pathway but whether such glomeruli can also metabolize arachidonic acid via the lipoxygenase pathway is controversial. [1-14C]Arachidonic acid was incubated with glomeruli or glomerular fractions isolated from rat and human renal cortex. The products were extracted, purified by high performance liquid chromatography, and identified by comparison of their retention times with those of authentic hydroxyeicosatetraenoic acid (HETE) standards and by gas chromatography-mass spectrometry. At low substrate concentrations, human glomeruli synthesized in equivalent amounts 12- and 15-HETE, whereas rat glomeruli synthesized only 12-HETE and in larger quantities than in man. At higher substrate concentrations, both species synthesized 12- and 15-HETE and the rate of synthesis for both products was higher in human glomeruli. No other HETE was detected in either species. The lipoxygenase products were stored within the glomeruli and recovered almost equally in the 10,000 x g pellet and in the 100,000 X g supernatant of the homogenized glomeruli. The properties of the lipoxygenase system were the following: the enzyme was distributed equally in the membranes and the cytosol; 12-HETE accumulation was linear with time over 15 min; and 12-HETE production correlated linearly with the amount of glomerular protein. 12-Lipoxygenase activity was maximum at pH 7.5 (rat) or 9.0 (human) and at 40-42 degrees C (both species). Km values calculated at low concentrations of substrate (10-200 microM) were for 15-HETE, 125 and 667 microM with murine and human glomeruli, respectively, and for 12-HETE, 44 microM with the glomeruli of both species. This study demonstrates lipoxygenase activity in murine and, for the first time, in human glomeruli. The products of such enzymatic activity, 12- and 15-HETE, may mediate the glomerular inflammatory response in various experimental or spontaneous glomerular diseases.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
January 1990, Advances in prostaglandin, thromboxane, and leukotriene research,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
February 1984, Acta ophthalmologica,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
September 1988, Journal of immunology (Baltimore, Md. : 1950),
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
January 1983, Biochimica et biophysica acta,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
October 1988, Prostaglandins, leukotrienes, and essential fatty acids,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
September 1985, Journal of neurochemistry,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
June 1987, Digestive diseases and sciences,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
November 2006, Current cancer drug targets,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
June 2014, Placenta,
J Sraer, and M Rigaud, and M Bens, and H Rabinovitch, and R Ardaillou
February 2022, Prostaglandins & other lipid mediators,
Copied contents to your clipboard!