Distribution of alpha-actinin in single isolated smooth muscle cells. 1983

F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty

In order to probe the organization of the contractile machinery in smooth muscle, we have studied the distribution of alpha-actinin, a protein present in high concentration in dense bodies, structures apparently analogous to the Z-disks of striated muscle. Localization of alpha-actinin in single isolated smooth muscle cells of the stomach muscularis of Bufo marinus was determined by analysis of the pattern of anti-alpha-actinin staining in single fluorescence photomicrographs, stereo pair micrographs, and computerized three-dimensional reconstructions from multiple image planes. The distribution of anti-alpha-actinin and antitubulin staining was compared in contracted and relaxed cells. The studies revealed that alpha-actinin is present in high concentrations in fusiform elements (mean axial ratio = 4.82) throughout the cytoplasm and in larger, more irregularly shaped plaques along the cell margins. Many of the fusiform-stained elements are organized into stringlike arrays characterized by a regular repeating pattern (mean center-to-center interspace = 2.2 +/- 0.1 micron). These linear arrays appear to terminate at the anti-alpha-actinin stained larger plaques along the cell margin; several of these strings often run in parallel with their elements in lateral register. While this general pattern of organization is maintained in cells during contraction, the distance between successive stained elements in stringlike arrays is decreased. We suggest that the decrease in the distance between elements in these strings results from shortening of materials that constitute these linear arrays. We do not believe that the shortening within these arrays reflects compression by forces generated elsewhere within the cell, as the reorganization of noncontractile microtubules is qualitatively different from the changes in the pattern of anti-alpha-actinin staining.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
January 1982, Methods in enzymology,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
July 2005, The international journal of biochemistry & cell biology,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
April 1981, Biochimica et biophysica acta,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
January 1994, Cell motility and the cytoskeleton,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
August 1997, European journal of biochemistry,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
August 1997, Biochemistry,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
January 1987, Comparative biochemistry and physiology. A, Comparative physiology,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
January 1984, Advances in experimental medicine and biology,
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
March 1983, Science (New York, N.Y.),
F S Fay, and K Fujiwara, and D D Rees, and K E Fogarty
July 2008, The Journal of biological chemistry,
Copied contents to your clipboard!