Testing the mutagenicity of malondialdehyde and formaldehyde by the Drosophila mosaic and the sex-linked recessive lethal tests. 1983

J Szabad, and I Soós, and G Polgár, and G Héjja

The mutagenicities of malondialdehyde and formaldehyde were tested by screening each for genetic mosaics of Drosophila melanogaster and by the Muller-5 test for sex-linked recessive lethal mutations. For comparison, the effects of X-rays were also assayed by the above technique. Malondialdehyde, a degradation product of polyunsaturated fatty acids, was found to be a weak mutagen by the above criteria; it induced point mutations and chromosome exchanges at low frequency, as proved by the mosaic test, but failed to induce detectable sex-linked lethality. Formaldehyde was more mutagenic than malondialdehyde; beside induction of mosaic spots it induced sex-linked recessive lethal mutations, but only in the larval testes of Drosophila. Formaldehyde also induced disintegration of the clones. Formaldehyde treatment (feeding larvae with formaldehyde-containing food for about 4 days) was 5 times more mutagenic than malondialdehyde treatment and 5 times less effective than irradiation by 1000 R of X-rays. Wing mosaicism offers a more sensitive way to detect mutagenesis as compared with eye mosaicism. It is suggested that aldehyde-induced mosaic spots derive from mitotic recombination and point mutations.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008297 Male Males
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D009030 Mosaicism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane

Related Publications

J Szabad, and I Soós, and G Polgár, and G Héjja
November 1987, Mutation research,
J Szabad, and I Soós, and G Polgár, and G Héjja
January 1982, Mutation research,
J Szabad, and I Soós, and G Polgár, and G Héjja
October 1982, Journal of food protection,
J Szabad, and I Soós, and G Polgár, and G Héjja
April 2014, Drug and chemical toxicology,
J Szabad, and I Soós, and G Polgár, and G Héjja
January 1982, Mutation research,
J Szabad, and I Soós, and G Polgár, and G Héjja
January 1985, Mutation research,
J Szabad, and I Soós, and G Polgár, and G Héjja
January 1987, Environmental and molecular mutagenesis,
Copied contents to your clipboard!