Effects of protein malnutrition and ascorbic acid levels on drug metabolism. 1983

T K Basu

The duration of action of drugs (or other environmental chemicals) is dependent on their rate of metabolic deactivation and elimination from the body. Termination of activity is achieved either through excretion of the drug via the kidney and bile or, more commonly, through metabolic deactivation by enzymes of the liver and other tissues. In recent years, it has become increasingly obvious that nutritional status is one of the major factors capable of modifying the pharmacological effect of drugs. Numerous studies have indicated that the process of drug metabolism may be affected by acute starvation, undernutrition, protein nutrition, and deficiencies of minerals, vitamins, and lipids. Although most of the evidence concerning the effects of nutrition on the metabolism of drugs has been derived from studies on experimental animals, there is significant fragmentary human data to show that the same effects may occur in man. This paper will discuss the influence of nutritional status with particular references to protein and ascorbic acid on the metabolism of foreign compounds including drugs. The interrelationships of nutrition and the metabolism of drugs are an important consideration in view of the widespread recurrence of primary malnutrition in the developing countries, and of secondary malnutrition in more affluent societies, especially in debilitated chronically ill patients, in postoperative patients, and in those whose dietary manipulations are carried out in weight-reducing regimens. The effects of nutrition on drug metabolism may be viewed as an extension of the search for one of the environmental factors that modify drug action.

UI MeSH Term Description Entries
D011488 Protein Deficiency A nutritional condition produced by a deficiency of proteins in the diet, characterized by adaptive enzyme changes in the liver, increase in amino acid synthetases, and diminution of urea formation, thus conserving nitrogen and reducing its loss in the urine. Growth, immune response, repair, and production of enzymes and hormones are all impaired in severe protein deficiency. Protein deficiency may also arise in the face of adequate protein intake if the protein is of poor quality (i.e., the content of one or more amino acids is inadequate and thus becomes the limiting factor in protein utilization). (From Merck Manual, 16th ed; Harrison's Principles of Internal Medicine, 12th ed, p406) Deficiency, Protein,Deficiencies, Protein,Protein Deficiencies
D011502 Protein-Energy Malnutrition The lack of sufficient energy or protein to meet the body's metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor quality dietary protein, increased demands due to disease, or increased nutrient losses. Marasmus,Protein-Calorie Malnutrition,Malnutrition, Protein-Calorie,Malnutrition, Protein-Energy,Malnutritions, Protein-Energy,Protein Calorie Malnutrition,Protein Energy Malnutrition
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

T K Basu
May 1972, Biochemical pharmacology,
T K Basu
July 1987, Sheng li ke xue jin zhan [Progress in physiology],
T K Basu
July 1954, The Journal of vitaminology,
T K Basu
August 1976, The Journal of pharmacology and experimental therapeutics,
T K Basu
May 1976, The American journal of clinical nutrition,
T K Basu
September 1973, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!